首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Lymphocyte egress from the vascular compartment into the lymph node (LN) parenchyma occurs at the postcapillary venules, termed high endothelial venules (HEVs). Lymphocyte adhesion and migration through the HEVs is a receptor-mediated, energy-dependent, process. The aim of this study was to investigate the role of MHC Class II antigen expression on lymphocyte-HEV interaction in normal (CBA) and autoimmune (MRL/l) mice. Using the HEV binding assay, lymphocyte adhesion to LN sections pretreated with monoclonal antibody (MAb; 10-2.16) was decreased compared to diluent (mean of the differences +/- standard deviation; xd +/- SD: 0.749 +/- 0.22, P less than 0.0075)- and myeloma immunoglobulin-pretreated controls (xd = 0.462 +/- 0.13, P less than 0.005). Similar inhibition of binding was found in MRL/l LN sections pretreated with MAb 10-2.16. Binding inhibition was concentration dependent, but total inhibition was never achieved. Several other anti-Ia MAb's were used, but failed to inhibit lymphocyte attachment. Lymphocyte binding to control sections treated with MAb's against MHC Class I antigen, plasminogen activator (PAM-3), anti-thrombin III (AT-IIIm), and MECA-325 antigen was not significantly different from diluent controls. LN cell suspensions pretreated with MAb 10-2.16 bound normally to LN sections. By contrast, MAb to lymphocyte homing receptor (MEL-14) inhibited lymphocyte adhesion. The role of Class II antigens in lymphocyte-HEV interactions is discussed.  相似文献   

2.
While CCR7 ligands direct T cell trafficking into lymph nodes (LNs) and Peyer's patches (PPs), chemokines that regulate B cell trafficking across high endothelial venules (HEVs) remain to be fully elucidated. Here we report that CXC chemokine ligand (CXCL)13 (B lymphocyte chemoattractant) is detected immunohistologically in the majority of HEVs in LNs and PPs of nonimmunized mice. Systemically administered anti-CXCL13 Ab bound to the surface of approximately 50% of HEVs in LNs and PPs, but not to other types of blood vessels, indicating that CXCL13 is expressed in the HEV lumen. In CXCL13-null mice, B cells rarely adhered to PP HEVs, whereas T cells did efficiently. Superfusion of CXCL13-null PPs with CXCL13 restored the luminal presentation of CXCL13 and also B cell arrest in PP HEVs at least partially. Collectively, these results indicate that CXCL13 expressed in the HEV lumen plays a crucial role in B cell trafficking into secondary lymphoid tissues such as PPs.  相似文献   

3.
The first step in the migration of lymphocytes out of the blood is adherence of lymphocytes to endothelial cells (EC) in the postcapillary venule. It is thought that in inflammatory reactions cytokines activate the endothelium to promote lymphocyte adherence and migration into the inflammatory site. Injection of IFN-gamma, IFN-alpha/beta, and TNF-alpha into the skin of rats stimulated the migration of small peritoneal exudate lymphocytes (sPEL) into the injection site, and these cytokines mediated lymphocyte recruitment to delayed-type hypersensitivity, sites of virus injection, and in part to LPS. The effect of cytokines on lymphocyte adherence to rat microvascular EC was examined. IFN-gamma, IFN-alpha/beta, IL-1, TNF-alpha, and TNF-beta increased the binding of small peritoneal exudate lymphocyte (sPEL) to EC. IFN-gamma was more effective and stimulated adherence at much lower concentrations than the other cytokines. IL-2 did not increase lymphocyte adherence. LPS strongly stimulated lymphocyte binding. Treatment of EC, but not sPEL, enhanced adhesion, and 24 h of treatment with IFN-gamma and IL-1 induced near maximal adhesion. Lymph node lymphocytes, which migrate poorly to inflammatory sites, adhered poorly to unstimulated and stimulated EC, whereas sPEL demonstrated significant spontaneous adhesion which was markedly increased by IFN-gamma, IL-1, and LPS. Spleen lymphocytes showed an intermediate pattern of adherence. Combinations of IFN-gamma and TNF-alpha were additive in stimulating sPEL-EC adhesion. Depletion of sPEL and spleen T cells by adherence to IFN-gamma stimulated EC decreased the in vivo migration of the lymphocytes to skin sites injected with IFN-gamma, IFN-alpha/beta, TNF-alpha, poly I:C, LPS, and to delayed-type hypersensitivity reactions by 50%, and significantly increased the migration of these cells to normal lymph nodes, as compared to unfractionated lymphocytes. Thus the cytokines and lymphocytes involved in migration to cutaneous inflammation in the rat stimulate lymphocyte adhesion to rat EC in vitro, and IFN-gamma stimulated EC appear to promote the selective adhesion of inflammatory site-seeking lymphocytes.  相似文献   

4.
The adhesion of lymphocytes to endothelial cells lining the postcapillary high endothelial venules (HEV) is the first step in their emigration from the bloodstream into lymph nodes and Peyer's patches (PP). We have recently shown that the adhesiveness of cultured rat lymph node and PP HEV cells for thoracic duct lymphocytes can be increased significantly by pretreatment with TNF-alpha, IFN-gamma, and IL-4. In the present study we investigated the role of transforming growth factor-beta 1 (TGF-beta) on the adhesiveness of nonstimulated and cytokine-stimulated PP HEV cells for rat lymphocytes. The results indicated that at picomolar concentrations, TGF-beta significantly (p less than 0.001) decreased the ability of PP HEV cells to adhere 51Cr-labeled rat lymphocytes. Maximal inhibition was observed with a TGF-beta dose of 0.5 ng/ml and an incubation time of 6 to 12 h. TGF-beta did not affect the morphology of HEV cells and had no adverse effect on their viability. Moreover, the decrease in HEV adhesiveness by TGF-beta was reversible, with lymphocyte binding returning to control level 24 h after removal of the cytokine. The specificity of TGF-beta was confirmed by the ability of neutralizing anti-TGF-beta 1 antibody, but not control serum, to abolish the inhibitory properties of the cytokine. In addition, TGF-beta completely abrogated the increased adhesiveness of PP HEV cells normally induced by TNF-alpha or IFN-gamma. In contrast, TGF-beta had no effect on the stimulating effects of IL-4. Moreover, preincubation of PP HEV cells with TGF-beta did not alter the ability of these cells to respond to IL-4. Importantly, the adhesion of rat lymphocytes to IL-4-stimulated PP HEV cells can be blocked by pretreatment of lymphocytes with the PP-homing receptor-specific 1B.2.6 antibody whereas pretreatment of human mononuclear cells with anti-very late activation antigen-4 alpha antibody inhibited only partially the binding of these cells to the IL-4-stimulated PP HEV monolayers. Taken together, these findings strongly suggest that TGF-beta and IL-4 play important regulatory roles in lymphocyte-HEV adhesion and that the stimulatory effect of IL-4 is mediated at least in part through the increased expression of organ-specific ligands on HEV cells.  相似文献   

5.
Lymphocytes from the blood home to secondary lymphoid tissues through a process of tethering, rolling, firm adhesion and transmigration. Tethering and rolling of lymphocytes is mediated by the interaction of L-selectin on lymphocytes with sulphated ligands expressed by the specialized endothelial cells of high endothelial venules (HEVs). The sulphate-dependent monoclonal antibody MECA79 stains HEVs in peripheral lymph nodes and recognizes the complex of HEV ligands for L-selectin termed peripheral node addressin. High endothelial cell GlcNAc-6-sulphotransferase/L-selectin ligand sulphotransferase is a HEV-expressed sulphotransferase that contributes to the formation of the MECA79 epitope and L-selectin ligands on lymph node HEVs. MECA79-reactive vessels are also common at sites of chronic inflammation, suggesting mechanistic parallels between lymphocyte homing and inflammatory trafficking.  相似文献   

6.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

7.
Production of interferon (IFN) by Listeria monocytogenes (LM) in nonimmunized mouse spleen cell cultures was studied. IFN-gamma defined by virtue of its acid stability and antigenicity was produced in spleen cell cultures obtained from ddY mice, C57BL/6 mice, and BALB/c mice in response to heat-killed (HK) LM within 24 hr. On the other hand, production of IFN-alpha/beta was demonstrated in spleen cell cultures obtained from one of four nude mice (BALB/c, nu/nu). Therefore, it is important to know the reason why the spleen cells of mice other than nude mice did produce only IFN-gamma, but did not produce IFN-alpha/beta in response to HK-LM. Spleen cells obtained from ddY mice were fractionated, and the cellular source for IFN production of either IFN-alpha/beta or IFN-gamma induced by HK-LM was investigated. IFN-gamma was produced only by a mixture of T lymphocytes (nylon wool-nonadherent, Thy-1-positive cells) and macrophages by HK-LM. Neither T lymphocytes nor macrophages alone produced IFN by HK-LM. Macrophage-depleted spleen cells produced neither IFN-gamma nor IFN-alpha/beta, but these cells acquired the ability to produce IFN-alpha/beta, not IFN-gamma, only when they had been treated with IFN-alpha/beta. A possible mechanism of both IFN-gamma and IFN-alpha/beta induction by Listeria in mouse spleen cell cultures is discussed.  相似文献   

8.
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.  相似文献   

9.
Normal peritoneal M phi of C3H/HeN mice were able to suppress lymphocyte proliferation in a dose-dependent fashion when added to Con A-pulsed spleen cell cultures. However, M phi-suppressive activity could be partially or completely reduced by in vitro pre-exposure to nonimmune IFN-alpha or immune recombinant IFN-gamma. For both IFN-alpha and IFN-gamma, reduction of M phi suppression was marginal at 10(1) U/ml and became highly significant at 10(2) to 10(3)/ml. The ability of IFN-alpha and IFN-gamma to modulate M phi suppression appears to be related to distinct mechanisms. In fact, impairment of M phi suppression by IFN-alpha occurred in parallel to the decrease of M phi capacity to produce PGE2 and the oxygen intermediate O2-, two molecules responsible for M phi-suppressive activity. In contrast, M phi exposed to IFN-gamma showed only impairment of PGE2 production, whereas O2- release was not significantly affected. Furthermore, at variance with IFN-alpha, IFN-gamma directly stimulated M phi to synthesize and release IL 1, a monokine known to promote lymphocyte proliferation.  相似文献   

10.
Certain lymphoid chemokines are selectively and constitutively expressed in the high endothelial venules (HEV) of lymph nodes and Peyer's patches, where they play critical roles in the directional migration of extravasating lymphocytes into the lymphoid tissue parenchyma. How these chemokines are selectively localized and act in situ, however, remains unclear. In the present study, we examined the possibility that basal lamina-associated extracellular matrix proteins in the HEVs are responsible for retaining the lymphoid chemokines locally. Here we show that collagen IV (Col IV) bound certain lymphoid chemokines, including CCL21, CXCL13, and CXCL12, more potently than did fibronectin or laminin-1, but it bound CCL19 and CCL5 only weakly, if at all. Surface plasmon resonance analysis indicated that Col IV bound CCL21 with a low nanomolar K(D), which required the C-terminal region of CCL21. Col IV can apparently hold these chemokines in their active form upon binding, because the Col IV-bound chemokines induced lymphocyte migration efficiently in vitro. We found by immunohistochemistry that Col IV and CCL21, CXCL13, and CXCL12 were colocalized in the basal lamina of HEVs. When injected s.c. into plt/plt mice, CCL21 colocalized at least partially with Col IV on the basal lamina of HEVs in draining lymph nodes. Collectively, our results suggest that Col IV contributes to the creation of a lymphoid chemokine-rich environment in the basal lamina of HEVs by binding an array of locally produced lymphoid chemokines that promote directional lymphocyte trafficking from HEVs into the lymphoid tissue parenchyma.  相似文献   

11.
Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma   总被引:23,自引:0,他引:23  
Lymphocytes are recruited out of the blood into delayed-type hypersensitivity (DTH) reactions, but the factors controlling their migration are poorly understood. Our previous studies have shown that IFN-alpha/beta, its inducers, and T cell lymphokines can induce lymphocyte migration into the skin after intradermal injection. The present studies were designed to determine the effect of rIFN-gamma, IL-1, and anti-IFN-gamma on lymphocyte recruitment into DTH. Small peritoneal exudate lymphocytes, which preferentially migrate to inflammatory sites, were labelled with 111In and injected i.v. into rats. The intradermal injection of IFN-gamma stimulated the migration of these lymphocytes into the skin. IL-1 induced very little migration by itself, but enhanced the effect of IFN-gamma. Kinetic analysis demonstrated that the migration of lymphocytes to IFN-gamma was rapid, with a peak at 6 h, whereas migration into a DTH reaction was minimal for the first 8 h and reached a peak 24 h after intradermal injection. Polyclonal rabbit anti-IFN-gamma anti-serum, and a Mab to IFN-gamma, DB-2, could almost completely block lymphocyte migration induced by IFN-gamma. Furthermore, DB-2 inhibited lymphocyte recruitment into DTH reactions by 50 to 90%. This Mab did not affect migration in response to IFN-alpha/beta, although it partially inhibited the response to polyI:C. The effect of IFN-gamma on lymphocyte recruitment was not specific for small peritoneal exudate lymphocytes, because both spleen T cells and lymph node cells migrated in response to IFN-gamma and DB-2 inhibited the recruitment of splenic T cells to DTH. Thus, IFN-gamma is a potent stimulator of lymphocyte migration into the skin and a major mediator of lymphocyte recruitment into DTH.  相似文献   

12.
Lymphocyte migration from the blood into the lymph nodes in most species occurs across post-capillary high endothelial venules (HEV). In a previous study, we proposed that lymphocyte extravasation involves receptor-mediated binding followed by adenylate cyclase-dependent activation of lymphocyte motility. This hypothesis was, in part, based on observations of in vitro lymphocyte adherence to HEV by employing pertussigen, which is a known inhibitor of lymphocyte recirculation. In vitro lymphocyte-HEV binding requires a cold (6 degrees C) incubation step and binding is poor to nil if the assay is attempted at room (23 degrees C) or physiologic temperature. We decided to investigate why this assay is temperature restricted, because of the possibility that pertussigen or fucoidin -treated lymphocytes might interact with HEV differently at higher temperatures. We now report that O.C.T. compound (OCT), the embedding matrix generally used to cut frozen lymph node sections, is toxic to lymphocytes at temperatures above 6 degrees C. Exclusion of OCT from the assay system will allow lymphocyte-HEV binding to occur at 23 degrees C and to a lesser extent at 37 degrees C. With this modified protocol, lymphocytes treated with either pertussigen, fucoidin , or neuraminidase were tested for adherence to HEV at 23 degrees C. No essential difference in binding properties was observed from what had been reported at 6 degrees C. In contrast, trypsin-treated lymphocytes that did not bind to HEV with the standard technique at 6 degrees C did adhere to a minimal extent to HEV at 23 degrees C using the modified procedure. We also report some preliminary work, using the modified assay, on in vitro lymphocyte-HEV binding of rat, rabbit, and guinea pig lymphocytes to sections of lymph nodes from the respective species.  相似文献   

13.
Epstein Barr virus (EBV)-infection of normal peripheral blood mononuclear cells (PBMC) in vitro induces IFN-alpha secretion from B cell and natural killer (NK) cell populations, and IFN-gamma secretion from T cells. IFN-gamma depends on prior elaboration of IL 2 and IL 1 that originates from monocytes and NK cells. PBMC from rheumatoid arthritis (RA) patients released moderately elevated levels of IFN-alpha (236 +/- 62 U/ml vs 168 +/- 34 in normals). In contrast, IFN-gamma was significantly lower in RA (88 +/- 34 U/ml vs 209 +/- 32) with an associated deficit in IL 2. A monocyte-dependent factor was shown to be responsible for this deficit, since monocyte depletion of RA cultures normalized the levels of IL 2 and IFN-gamma. Significantly lower levels of IL 1 activity were present in the supernatants of RA PBMC cultures as compared with normal cultures, and this was shown to be associated with presence of a nondialyzable IL 1 inhibitor. This inhibitor was capable of preventing the IL 1-dependent synthesis of IL 2 and IFN-gamma by normal PBMC. Exogenous IL 1 or IL 2 restored the deficient IFN-gamma secretion in RA PBMC. Thus, the deficient ability of RA lymphocytes to control EBV infection may be secondary to impairment of a monocyte-T cell interaction at the level of IL 1.  相似文献   

14.
 Using an immunoelectron microscopic technique, we demonstrated the distinctive localization of L-selectin, αL and β2 integrins (LFA-1) on lymphocytes adhering to high endothelial venules (HEVs) of peripheral lymph nodes. Immunogold staining clearly demonstrated the preferential localization of L-selectin on the faintly adherent microvilli to endothelial surfaces. Often, the particles of L-selectin were found around those microvilli with a dispersed distribution. Examination by antibody-coated latex beads showed that the localization of L-selectin was not restricted to the lymphocyte surface but also found on endothelial cells. These data suggest the molecular shedding from lymphocytes and its transfer to the HEV surface as the ’molecular footprints’ of rolling cells. Concomitant with the dispersion of L-selectin, the gold particles of αL and β2 integrins showed significant capping and clustering images on the adherent border of lymphocytes. This redistribution of LFA-1 may be important for inducing the transition of the molecule into the active state to facilitate effective binding to its endothelial ligands. These morphological findings revealed the characteristic behavior of L-selectin and LFA-1 on lymphocytes, and they confirm their respective molecular roles in the current adhesion cascade model between lymphocytes and HEVs. Accepted: 9 June 1998  相似文献   

15.
16.
Recombinant E. coli-derived murine IFN-gamma (Mu-rIFN-gamma; 5 X 10(7) U/mg) was radiolabeled with 125I by the chloramine-T method without loss of its antiviral activity. The 125I-Mu-rIFN-gamma showed specific binding to L1210 cells. Scatchard analysis indicates about 4000 binding sites per cell and an apparent Kd of 5 X 10(-10)M. Binding of 125I-Mu-rIFN-gamma to cells was inhibited by both natural (glycosylated) and rIFN-gamma, but not by IFN-alpha/beta. Receptor-bound 125I-Mu-rIFN-gamma was rapidly internalized when incubation temperature was raised from 4 degrees C to 37 degrees C. On internalization, almost no IFN-gamma degradation was observed during 16 hr incubation. 125I-Mu-rIFN-gamma binding capacity decreased in cells preincubated with low doses of unlabeled Mu-rIFN-gamma, but not with IFN-alpha/beta. This receptor down-regulation was dose-dependent: 90% reduction of 125I-Mu-rIFN-gamma binding was observed after preincubation with 100 U/ml. After removal of IFN-gamma from the culture medium, the binding capacity increased with time. However, reappearance of receptor was completely blocked by cycloheximide or tunicamycin, suggesting that re-expression of receptors is not due to recycling but to the synthesis of new receptors, and that the receptor is probably a glycoprotein. Cross-linking of 125I-Mu-rIFN-gamma to surface L1210 cell proteins by using bifunctional agents yielded a predominant complex of m.w. 110,000 +/- 5000. Thus, assuming a bimolecular complex, the m.w. of the receptor or receptor subunit would be close to 95,000 +/- 5000. The formation of such a complex appeared highly specific on the basis of the following criteria: it could be inhibited by the addition of Mu-rIFN-gamma but not by Mu-rIFN-alpha/beta, it was not obtained in cells pretreated with IFN-gamma to induce down-regulation of IFN-gamma receptors, and it was also identified in the IFN-alpha/beta-resistant L1210R cell line, known to be sensitive to IFN-gamma and which we have recently shown to express IFN-gamma receptors.  相似文献   

17.
Recirculating lymphocytes initiate extravasation from the blood stream by binding to specialized high endothelial venules (HEV) within peripheral lymph nodes (PN) and other secondary lymphoid organs. We have previously reported that lymphocyte attachment to PN HEV is selectively inhibited by mannose-6-phosphate (M6P) and related carbohydrates (Stoolman, L. M., T. S. Tenforde, and S. D. Rosen, 1984, J. Cell Biol., 99:1535-1540). In the present study, we employ a novel cell-surface probe consisting of fluorescent beads derivatized with PPME, a M6P-rich polysaccharide. PPME beads directly identify a carbohydrate-binding receptor on the surface of mouse lymphocytes. In every way examined, lymphocyte attachment to PPME beads (measured by flow cytofluorometry) mimics the interaction of lymphocytes with PN HEV (measured in the Stamper-Woodruff in vitro assay): both interactions are selectively inhibited by the same panel of structurally related carbohydrates, are calcium-dependent, and are sensitive to mild treatment of the lymphocytes with trypsin. In addition, thymocytes and a thymic lymphoma, S49, bind poorly to PPME beads in correspondence to their weak ability to bind to HEV. When the S49 cell line was subjected to a selection procedure with PPME beads, the ability of the cells to bind PPME beads, as well as their ability to bind to PN HEV, increased six- to eightfold. We conclude that a carbohydrate-binding receptor on mouse lymphocytes, detected by PPME beads, is involved in lymphocyte attachment to PN HEV.  相似文献   

18.
The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.  相似文献   

19.
We wished to determine whether human lymphocytes, like their murine counterparts, show organ-specific interactions with high endothelial venules (HEV). Functional HEV-binding ability was measured by an in vitro assay of lymphocyte adherence to HEV in frozen sections of human lymphoid tissues which was adapted from rodent systems. It was found that human lymphocytes bind selectively to HEV and that, whereas mature T lymphocytes bind preferentially to HEV in peripheral lymph nodes and tonsils, B lymphocytes show preferential binding to HEV in GALT. Moreover, by analyzing the binding characteristics of T4+ and T8+ T cell populations, it was found that T8+ cells adhere preferentially to HEV in GALT and mesenteric lymph nodes and tonsil, and that T4+ cells bind slightly better to HEV in peripheral lymph nodes. The above findings indicate that organ--specific lymphocyte-endothelial cell recognition mechanisms exist also in humans, and suggest that these mechanisms play an important role in normal and pathologic lymphocyte traffic.  相似文献   

20.
Nasal-associated lymphoid tissue (NALT), a mucosal inductive site for the upper respiratory tract, is important for the development of mucosal immunity locally and distally to intranasally introduced Ag. To more fully understand the induction of nasal mucosal immunity, we investigated the addressins that allow for lymphocyte trafficking to this tissue. To investigate the addressins responsible for naive lymphocyte binding, immunofluorescent and immunoperoxidase staining of frozen NALT sections were performed using anti-mucosal addressin cell adhesion molecule-1 (MAdCAM-1), anti-peripheral node addressin (PNAd), and anti-VCAM-1 mAbs. All NALT high endothelial venules (HEV) expressed PNAd, either associated with MAdCAM-1 or alone, whereas NALT follicular dendritic cells expressed both MAdCAM-1 and VCAM-1. These expression profiles were distinct from those of the gut mucosal inductive site, Peyer's patches (PP). The functionality of NALT HEV was determined using a Stamper-Woodruff ex vivo assay. The anti-L-selectin MEL-14 mAb blocked >90% of naive lymphocyte binding to NALT HEV, whereas the anti-MAdCAM-1 mAb, which blocks almost all naive lymphocyte binding to PP, minimally blocked binding to NALT HEV. NALT lymphocytes exhibited a unique L-selectin expression profile, differing from both PP and peripheral lymph nodes. Finally, NALT HEV were found in increased amounts in the B cell zones, unlike PP HEV. These results suggest that NALT is distinct from the intestinal PP, that initial naive lymphocyte binding to NALT HEV involves predominantly L-selectin and PNAd rather than alpha4beta7-MAdCAM-1 interactions, and that MAdCAM-1 and VCAM-1 expressed by NALT follicular dendritic cells may play an important role in lymphocyte recruitment and retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号