共查询到20条相似文献,搜索用时 15 毫秒
1.
W Korytowski C C Felix B Kalyanaraman 《Biochemical and biophysical research communications》1987,144(2):692-698
Oxidase electrode measurements have shown that the neurotoxin metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium autoxidizes to hydrogen peroxide and 1-methyl-4-phenylpyridinium in a reaction promoted by iron chelates. The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity is discussed in the light of these findings. 相似文献
2.
We have studied the interaction of coenzyme Q with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)), the real neurotoxin to cause Parkinson's disease. Incubation of MPTP or MPDP(+) with rat brain synaptosomes induced complete reduction of endogenous ubiquinone-9 and ubiquinone-10 to corresponding ubiquinols. The reduction occurred in a time- and MPTP/MPDP(+) concentration-dependent manner. The reduction of ubiquinone induced by MPDP(+) went much faster than that by MPTP. MPTP did not reduce liposome-trapped ubiquinone-10, but MPDP(+) did. The real toxin MPP(+) did not reduce ubiquinone in either of the systems. The reduction by MPTP but not MPDP(+) was completely prevented by pargyline, a type B monoamine oxidase (MAO-B) inhibitor, in the synaptosomes. The results indicate that involvement of MAO-B is critical for the reduction of ubiquinone by MPTP but that MPDP(+) is a reductant of ubiquinone per se. It is suggested that ubiquinone could be an electron acceptor from MPDP(+) and promote the conversion from MPDP(+) to MPP(+) in vivo, thus accelerating the neurotoxicity of MPTP. 相似文献
3.
《Archives of biochemistry and biophysics》1998,360(1):93-98
To obtain direct evidence of the involvement of aldehyde oxidase (AO), a cytosolic molybdoflavoenzyme, in the metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we investigated thein vitrometabolism of MPTP and the two-electron-oxidized 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP+) by using mouse liver enzyme preparations. Incubation of MPTP with mitochondrial fraction gave exclusively 1-methyl-4-phenylpyridinium (MPP+); this reaction was inhibited by deprenyl, a monoamine oxidase (MAO)-B inhibitor, and KCN. When the mitochondrial fraction was combined with the cytosolic fraction, MPP+formation was markedly decreased, while a large amount of 1-methyl-4-phenyl-5,6-dihydro-2-pyridone (MPTP lactam) was newly formed. Incubation of MPDP+with the cytosolic fraction led to rapid formation of MPTP lactam with concomitant disappearance of the substrate. The cytosol-dependent formation of MPTP lactam was inhibited by known AO inhibitors, such as menadione, norharman, and KCN. The activity of cytosol in MPTP lactam formation was completely duplicated by purified mouse liver AO. These results indicate that AO catalyzes the metabolic conversion of MPDP+, produced from MPTP by MAO-B, to MPTP lactam. This metabolic pathway might be an important detoxification route, averting the formation of toxic MPP+. 相似文献
4.
1-Methyl-4-phenyl-2,3-dihydropyridinium perchlorate (MPDP+), an intermediate in the metabolism of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, was found to generate superoxide radicals during its autoxidation process. The generation of superoxide radicals was detected by their ability to reduce ferricytochrome c. Superoxide dismutase inhibited this reduction in a dose-dependent manner. The rate of reduction of ferricytochrome c was dependent not only on the concentration of MPDP+ but also on the pH of the system. Thus, the rate of autoxidation of MPDP+ and the sensitivity of this autoxidation to superoxide dismutase-inhibitable ferricytochrome c reduction were both augmented, as the pH was raised from 7.0 to 10.5. The rate constant (Kc) for the reaction of superoxide radical with ferricytochrome c to form ferricytochrome c was found to be 3.48 x 10(5) M-1 s-1. The rate constant (KMPDP+) for the reaction of MPDP+ with ferricytochrome3+ c was found to be only 4.86 M-1 s-1. These results, in conjunction with complexities in the kinetics, lead to the proposal that autoxidation of MPDP+ proceeds by at least two distinct pathways, one of which involves the production of superoxide radicals and hence is inhibitable by superoxide dismutase. It is possible that the free radicals so generated could induce oxidative injury which may be central to the MPTP/MPDP(+)-induced neuropathy. 相似文献
5.
A single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice caused 75-87% depletion of heart norepinephrine (NE) concentration 24 hrs later. MPP+ (1-methyl-4-phenylpyridinium) caused similar depletion of heart NE. The effect of MPTP was not blocked by pretreatment with deprenyl, an inhibitor of type B monoamine oxidase (MAO-B). Also, deprenyl pretreatment did not prevent the depletion of heart NE after 4 daily doses of MPTP, even though in the same mice deprenyl pretreatment did prevent depletion of dopamine in the striatum and of NE in the frontal cortex. Apparently the depletion of heart NE by MPTP, unlike the depletion of brain catecholamines, does not require that MPTP be metabolized by MAO-B and can be mimicked by systemic injection of MPP+. 相似文献
6.
1-Methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), a metabolic product of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has been shown to generate superoxide radicals during its autoxidation process. The generation of superoxide radicals was detected as a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO).O2- spin adduct by spin trapping in combination with EPR techniques. The rate of formation of spin adduct was dependent not only on the concentrations of MPDP+ and oxygen but also on the pH of the system. Superoxide dismutase inhibited the spin adduct formation in a dose-dependent manner. The ability of DMPO to trap superoxide radicals, generated during the autoxidation of MPDP+, and of superoxide dismutase to effectively compete with this reaction for the available O2-, has been used as a convenient competition reaction to quantitatively determine various kinetic parameters. Thus, using this technique the rate constant for scavenging of superoxide radical by superoxide dismutase was found to be 7.56 x 10(9) M-1 s-1. The maximum rate of superoxide generation at a fixed spin trap concentration using different amounts of MPDP+ was found to be 4.48 x 10(-10) M s-1. The rate constant (K1) for MPDP+ making superoxide radical was found to be 3.97 x 10(-6) s-1. The secondary order rate constant (KDMPO) for DMPO-trapping superoxide radicals was found to be 10.2 M-1 s-1. The lifetime of superoxide radical at pH 10.0 was calculated to be 1.25 s. These values are in close agreement to the published values obtained using different experimental techniques. These results indicate that superoxide radicals are produced during spontaneous oxidation of MPDP+ and that EPR spin trapping can be used to determine the rate constants and lifetime of free radicals generated in aqueous solutions. It appears likely that the nigrostriatal toxicity of MPTP/MPDP+ leading to Parkinson's disease may largely be due to the reactivity of these radicals. 相似文献
7.
Toshihiro Aiuchi Yoshihiro Shirane Hiroyasu Kinemuchi Yuichiro Arai Kazuyasu Nakaya Yasuharu Nakamura 《Neurochemistry international》1988,12(4):525-531
The effect of tetraphenylboron (TPB−), an activator of a membrane transport of lipophilic cations, on the inhibition of mouse liver mitochondrial respiration induced by a neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+), and by some structurally related compounds was studied. Of the compounds tested, MPP+ and 4-phenylpyridine (4-PP) significantly inhibited the respiration in an ADP-activated oxidation of substrates (state 3). TPB−, dose-dependently, shortened the lag time of MPP+-induced inhibition and thus lowered the concentrations of MPP+ for the inhibition. However, TPB−, even at the high concentration (10 μM), did not significantly affect 4-PP-induced inhibition. Carbonyl-cyanide-m-chlorophenylhydrazone (CCCP) blocked the respiratory inhibition by MPP+, independent of K+ concentration in the medium, and valinomycin blocked the inhibition only in the medium containing high K+ concentration. Determination of the intramitochondrial MPP+ concentration revealed about 1000-fold concentrated MPP+ from that in the medium during the incubation with TPB−, indicative of potentiation of MPP+ transport into mitochondria by TPB−. This might account for the enhancement of respiratory inhibition by MPP+. In the case of 4-PP, it will penetrate the mitochondrial membrane and intrinsically inhibit the respiration, but cannot accumulate in mitochondria. The present results indicate that, although the inhibitory potency of MPP+ per se is similar to 4-PP, MPP+ will be highly concentrated within mitochondria by the membrane potential, as the drive force for its transport. 相似文献
8.
D Di Monte G Ekstr?m T Shinka M T Smith A J Trevor N Castagnoli 《Chemico-biological interactions》1987,62(2):105-116
The parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is converted by isolated hepatocytes to its primary metabolite, the 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP+), and to its fully oxidized derivative, 1-methyl-4-phenylpyridinium ion (MPP+). Only the latter, however, accumulates in the cells. Incubation of hepatocytes in the presence of MPDP+ also results in the selective intracellular accumulation of MPP+. Conversion to MPP+ is more rapid and extensive after exposure to MPDP+, than with MPTP and the former is also more toxic. Addition of MPP+ itself is toxic to hepatocytes but only after a long lag period, which presumably reflects its limited access to the cell and its relatively slow intracellular accumulation. As previously shown with MPTP and MPP+, the cytotoxicity of MPDP+ is dose-dependent and is consistently preceeded by complete depletion of intracellular ATP. Similar to MPP+ but not MPTP, MPDP+ causes a comparable rate and extent of cytotoxicity and ATP loss in hepatocytes pretreated with the monoamine oxidase inhibitor pargyline. Pargyline blocks hepatocyte biotransformation of MPTP to MPP+, but it has no significant effect on MPP+ accumulation after exposure to either MPDP+ or MPP+. It is concluded that MPTP is toxic to hepatocytes via its monoamine oxidase-dependent metabolism and that MPP+ is likely to be the ultimate toxic metabolite which accumulates in the cell, causing ATP depletion and eventual cell death. 相似文献
9.
It was previously shown (Sayre, L. M., Arora, P. K., Feke, S. C., and Urbach, F. L. (1986) J. Am. Chem. Soc. 108, 2464-2466) that 1,3,3-trimethyl-4-phenyl-2,3-dihydropyridinium salt (the 3,3-dimethyl analogue of 1-methyl-4-phenyl-2,3-dihydropyridinium ion or MPDP+) is a good model for MPDP+ on the basis of its redox potential and was used to show that MPDP+ is unlikely to possess reactivity characteristics which could contribute to the neurotoxicity observed with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 3,3-Dimethyl-MPTP and 3,3-dimethyl-MPDP+ are now shown to interact with monoamine oxidase similar to MPTP and MPDP+, but only in the presence of beta-mercaptoethanol (beta-ME). In the absence of beta-ME, mixed competitive-noncompetitive inhibition kinetics are observed for 3,3-dimethyl-MPTP and 3,3-dimethyl-MPDP+, whereas competitive inhibition kinetics are exhibited by MPTP. In the presence of beta-ME, however, 3,3-dimethyl-MPTP also is a competitive inhibitor. 3,3-Dimethyl-MPTP and 3,3-dimethyl-MPDP+ also are time-dependent inactivators of monoamine oxidase, having identical kinetic constants, as is the case with MPTP and MPDP+. In the presence of beta-ME, but not glutathione, the rate of inactivation increases dramatically. When [beta-ME] and [3,3-dimethyl-MPTP] or [3,3-dimethyl-MPDP+] are varied, there is an optimal concentration of 1.0 mM for all three at which maximal inactivation rates are obtained. Another dramatic effect of the beta-ME is to lower the partition ratio for inactivation from greater than 50 to about one. This suggests that the effect of the beta-ME toward inactivation may be to induce a conformational change in the enzyme, which reorients an active site nucleophile for attack on the activated species. Support for involvement of an active site nucleophile is the finding that inactivation does not lead to a flavin adduct. Three possible mechanisms for inactivation of monoamine oxidase by MPTP and MPDP+ are suggested. 相似文献
10.
Enhancement by tetraphenylboron of the interaction of the 1-methyl-4-phenylpyridinium ion (MPP+) with mitochondria 总被引:3,自引:0,他引:3
R R Ramsay R J Mehlhorn T P Singer 《Biochemical and biophysical research communications》1989,159(3):983-990
Inhibition of mitochondrial energy production by MPP+ may be the key step in chemically-induced Parkinson's disease. Tetraphenylboron (TPB-) markedly enhances the effect of MPP+. Inhibition of respiration and uptake of MPP+ are accelerated, the former by up to two orders of magnitude. TPB increases the final concentration of MPP+ in the matrix by 2-3 fold, insufficient to explain the rapid inhibition of respiration. TPB- lowers the membrane surface potential by only about 20%, but increases the partitioning of MPP+ into organic solvent by one order of magnitude. TPB- also enhances the effect of MPP+ on inverted membranes, reducing the I50 by an order of magnitude. We suggest that TPB- acts by ion pairing with MPP+ to facilitate penetration into mitochondria as well as access to a hydrophobic inhibition site on NADH dehydrogenase. 相似文献
11.
Bai J Nakamura H Ueda S Kwon YW Tanaka T Ban S Yodoi J 《The Journal of biological chemistry》2004,279(37):38710-38714
1-Methyl-4-phenylpyridinium ion (MPP(+)), an active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces cell death and inhibition of cell proliferation in various cells. However, the mechanism whereby MPP(+) inhibits cell proliferation is still unclear. In this study, we found that MPP(+) suppressed the proliferation with accumulation in G(1) phase without inducing cell death in p53-deficient MG63 osteosarcoma cells. MPP(+) induced hypophosphorylation of retinoblastoma protein and rapidly down-regulated the protein but not mRNA levels of cyclin D1 in MG63 cells. The down-regulation of cyclin D1 protein was suppressed by a proteasome inhibitor, MG132. The cyclin D1 down-regulation by MPP(+) was also observed in p53-positive PC12, HeLa S3, and HeLa rho(0) cells, which are a subclone of HeLa S3 lacking mitochondrial DNA. Moreover, MPP(+) dephosphorylated Akt in PC12 cells, which was rescued by the pretreatment with nerve growth factor. In addition, the pretreatment with nerve growth factor or lithium chloride, a glycogen synthase kinase-3beta inhibitor, suppressed the cyclin D1 down-regulation caused by MPP(+). Our results demonstrate that MPP(+) induces cell cycle arrest independently of its mitochondrial toxicity or the p53 status of the target cells, but rather through the proteasome- and phosphatidylinositol 3-Akt-glycogen synthase kinase-3beta-dependent cyclin D1 degradation. 相似文献
12.
The hematopoietic cytokines erythropoietin (Epo) and granulocyte-colony stimulating factor (G-CSF) provide neuroprotection in several in vitro and in vivo models of Parkinson’s disease (PD). The molecular mechanism by which Epo and G-CSF signals reduce the neuronal death in PD is not clear. Here, we show that in rat pheochromocytoma PC12 cells, Epo and G-CSF efficiently repressed the 1-methyl-4-phenylpyridinium (MPP+)-induced expression of the proapoptotic protein PUMA (p53 up-regulated modulator of apoptosis). Accordingly, Epo and G-CSF treatment reduced the PC12 cell fraction that underwent apoptosis by MPP+ treatment and thus improved cell viability. Downregulation of PUMA expression by Epo and G-CSF in MPP+-treated PC12 cells seems to be mediated by repression of p53, as the expression of p53 was increased by MPP+-treatment and reduced by Epo and G-CSF. Together, these results suggest that the neuroprotective activities of Epo and G-CSF in an experimental model of PD involve the repression of the apoptosis-inducing action of PUMA. 相似文献
13.
González-Polo RA Soler G Alvarez A Fabregat I Fuentes JM 《Journal of neurochemistry》2003,84(2):305-315
Exposure of cerebellar granule cells (CGCs) to 1-methyl-4-phenylpyridinium (MPP+) results in apoptotic cell death, which is markedly attenuated by co-treatment of CGCs with the radical scavenger vitamin E. Analysis of free radical production and mitochondrial transmembrane potential (DeltaPsim), using specific fluorescent probes, showed that MPP+ mediates early radical oxygen species (ROS) production without a loss of DeltaPsim. Exposure to MPP+ also produces an early increase in Bad dephosphorylation and translocation of Bax to the mitochondria. These events are accompanied by cytochrome c release from mitochondria to cytosol, which is followed by caspase 3 activation. Exposure of the neurons to vitamin E maintains Bad phosphorylation and attenuates Bax translocation, inhibiting cytochrome c release and caspase activation. MPP+-mediated cytochrome c release is also prevented by allopurinol, suggesting the participation of xanthine oxidase in the process. Our results indicate that free radicals play an active role in the MPP+-induced early events that culminate with cell death. 相似文献
14.
Phellodendri Cortex (PC) is a traditional herbal medicine, widely used in Korea and China. The effects of the methanol extract of Phellodendri Cortex (PC extract) on 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis in PC-12 cells have been investigated. MPP+-induced apoptosis in PC-12 cells was accompanied by an increased bax/bcl-2 ratio, release of cytochrome c to the cytosol and activation of caspase-3. PC extract inhibited the downregulation of bcl-2 and the upregulation of bax, as well as the release of mitochondrial cytochrome c into the cytosol. In addition, PC extract attenuated caspase-3 activation and cleavage of poly (ADP-ribose) polymerase (PARP). These results suggest that the PC extract has protective effects against MPP+-induced neuronal apoptosis in PC-12 cells. 相似文献
15.
Structure-neurotoxicity trends of analogues of 1-methyl-4-phenylpyridinium (MPP+), the cytotoxic metabolite of the dopaminergic neurotoxin MPTP 总被引:3,自引:0,他引:3
P K Arora N J Riachi G C Fiedler M P Singh F Abdallah S I Harik L M Sayre 《Life sciences》1990,46(5):379-390
The dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) derives from its metabolism to 1-methyl-4-phenyl-pyridinium cation (MPP+), which is then selectively accumulated in dopaminergic neurons. In an effort to assess the structural requirements governing MPP+ cytotoxicity, we evaluated dopaminergic toxicity of MPP+ analogues 3 weeks after their microinfusion into rat substantia nigra. We also evaluated the substrate suitability of MPP+ analogues for high-affinity dopamine uptake in striatal synaptosomes by measuring their ability to induce specific dopamine release. The intranigral neurotoxicity of MPP+ analogues in vivo correlates mainly with their in vitro inhibitory activity on mitochondrial respiration, consistent with a compromise in cellular energy production as the principal mechanism of MPTP-induced cell death. This study extends the structure-neurotoxicity data base beyond that obtainable using MPTP analogues, since many of these are not metabolized to pyridinium compounds. Such information is crucial to assess which possible endogenous or exogenous compounds may exert MPTP/MPP(+)-like toxicity. 相似文献
16.
Carrier-independent entry of 1-methyl-4-phenylpyridinium (MPP+) into adrenal chromaffin cells as a consequence of charge delocalization 总被引:3,自引:0,他引:3
J F Reinhard A J Daniels G R Painter 《Biochemical and biophysical research communications》1990,168(3):1143-1148
The administration of 1-methyl-4-phenylpyridinium (MPP+) to cultures of adrenal medullary chromaffin cells resulted in time and concentration-dependent increases in the cellular content of MPP+. Co-incubation of cells with MPP+, in the presence of desmethylimipramine (DMI), reduced but did not prevent the accumulation of the pyridinium in these cells. Similarly, DMI and MPP+ co-administration reduced but did not prevent the neurotoxicant-induced release of a cytosolic marker, lactate dehydrogenase, into the media. Molecular orbital calculations reveal that the positive charge of MPP+ is highly delocalized throughout the pyridinium ring and consequently MPP+ may be able to diffuse down concentration or charge gradients. Thus, these data provide a basis for the entry of MPP+ into cells and subcellular organelles that lack a catecholamine transporter, e.g. mitochondria. 相似文献
17.
C L Hoppel D Grinblatt H C Kwok P K Arora M P Singh L M Sayre D Greenblatt 《Biochemical and biophysical research communications》1987,148(2):684-693
In order to clarify the structural requirements associated with the inhibition of mitochondrial respiration by MPP+, the neurotoxic metabolites of the Parkinsonian agent MPTP, ten sets of pyridine/N-methylpyridinium pairs and a few miscellaneous compounds were evaluated on rat liver intact mitochondria (Mw) and on submitochondrial particles (SMP). The pyridinium partners were much more potent inhibitors on Mw than on SMP, indicating that they are concentrated inside mitochondria by the energy-dependent process previously reported for MPP+, probably as a consequence of non-specific passive transport across the mitochondrial inner membrane in response to the transmembrane potential. In the SMP assay, the neutral pyridines were stronger inhibitors than were the pyridinium cations, and the inhibitory potency varied little with structural changes. The N-methylated forms of beta-carbolines may act as endogenous MPP+-like agents. 相似文献
18.
J N Chacón M R Chedekel E J Land T G Truscott 《Biochemical and biophysical research communications》1989,158(1):63-71
The one-electron reduction product of 1-methyl-4-phenyl-2,3-dihydropyridinium ion has been generated by pulse radiolysis and its absorption spectrum recorded. This radical was found to decay by second-order kinetics (2k = 9.5 x 10(8) M-1 s-1) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenyl-2,3-dihydropyridinium ion. Reactions of the above radical species and that formed by one-electron reduction of 1-methyl-4-phenylpyridinium ion, which can also be generated by one-electron oxidation of 1-methyl-4-phenyl-1,2-dihydropyridine, with a number of molecules of biochemical interest have been studied. The one-electron reduction product of oxidised nicotinamide adenine dinucleotide efficiently reduced 1-methyl-4-phenyl-2,3-dihydropyridinium ion (k = 2.2 x 10(9) M-1 s-1). The relevance of these results in relation to redox cycling, a possible mechanism for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity, is discussed. 相似文献
19.
T D Buckman R Chang M S Sutphin S Eiduson 《Biochemical and biophysical research communications》1988,151(2):897-904
When uptake of the Parkinson's syndrome inducing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its major brain metabolite MPP+ (1-methyl-4-phenylpyridinium ion) by human platelets were compared in platelet rich plasma, a much higher rate was observed for the metabolite. The uptake process was saturable (Km = 6.8 microM; Vmax = 0.064 nmole/min/mg protein) and could be blocked by inhibitors of serotonin uptake. The accumulation of MPP+ by the platelets was accompanied by a decrease in intracellular ATP and an inhibition of mitochondrial state 3 respiration. These findings are consistent with earlier reports of the effect of MPP+ on isolated mitochondria as a potential cytotoxic mechanism, but also demonstrate that the dopamine uptake system is not the only means by which this metabolite can be efficiently transported into cells. 相似文献
20.
M P Singh F J Wang C L Hoppel L M Sayre 《Archives of biochemistry and biophysics》1991,286(1):138-146
The cytotoxic effect of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) is believed to be associated with a compromise in cellular energy arising as a consequence of its persistent inhibition of mitochondrial respiration. MPP+ is a rather weak inhibitor of electron transport, but it undergoes passive accumulation inside actively respiring mitochondria in response to the transmembrane electrochemical potential gradient. In order to test the prediction that dicationic analogs of MPP+ might be concentrated to a much greater extent and thereby exert especially potent inhibition of respiration on the intact organelle, we synthesized four differently spaced bis-pyridines, each in neutral, monocationic, and dicationic forms, and evaluated their inhibitory activities in intact mitochondria and in electron transport particles (ETP). Compared to the neutrals, the monocations and especially the dications exhibit reduced inhibition in ETP, but the inhibition in mitochondria is enhanced selectively for the cationic inhibitors presumably on account of their accumulation in the mitochondrial matrix. This enhancement is limited by the relatively poor ability of the cationic bis-pyridines to enter mitochondria, as judged from experiments which evaluated the rate of onset of inhibition (without preincubation), in the absence and presence of tetraphenylborate (TPB-). The dications appear to be transported less well than the monocations, and only the most lipophilic dication exhibited a substantially greater accumulation-dependent enhancement of inhibitory activity on mitochondria than did the corresponding monocation. The compounds studied here constitute a novel class of respiratory chain probes which may be useful for a variety of studies on mitochondria. 相似文献