首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Tissue hypoxia/ischemia are major pathophysiological determinants. Conditions of decreased oxygen availability provoke accumulation and activation of hypoxia-inducible factor-1 (HIF-1). Recent reports demonstrate a crucial role of HIF-1 for inflammatory events. Regulation of hypoxic responses by the inflammatory mediators nitric oxide (NO) and reactive oxygen species (ROS) is believed to be of pathophysiolgical relevance. It is reported that hypoxic stabilization of HIF-1alpha can be antagonized by NO due to its ability to attenuate mitochondrial electron transport. Likely, the formation of ROS could contribute to this effect. As conflicting results emerged from several studies showing either decreased or increased ROS production during hypoxia, we used experiments mimicking hypoxic intracellular ROS changes by using the redox cycling agent 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which generates superoxide inside cells. Treatment of A549, HEK293, HepG2, and COS cells with DMNQ resulted in a concentration-dependent raise in ROS which correlated with HIF-1alpha accumulation. By using a HIF-1alpha-von Hippel-Lindau tumor suppressor protein binding assay, we show that ROS produced by DMNQ impaired prolyl hydroxylase activity. When HIF-1alpha is stabilized by NO, low concentrations of DMNQ (<1 microM) revealed no effect, intermediate concentrations of 1 to 40 microM DMNQ attenuated HIF-1alpha accumulation and higher concentrations of DMNQ promoted HIF-1alpha stability. Attenuation of NO-induced HIF-1alpha stability regulation by ROS was mediated by an active proteasomal degradation pathway. In conclusion, we propose that scavenging of NO by ROS and vice versa attenuate HIF-1alpha accumulation in a concentration-dependent manner. This is important to fully elucidate HIF-1alpha regulation under inflammatory conditions.  相似文献   

4.
5.
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in facilitating tumor progression and metastasis. Reducing the levels of HIF-1α might therefore be an important anticancer strategy. This could be achieved by understanding the key cellular events involved in HIF-1α activation. Present study explored the effect of phenethyl isothiocyanate (PEITC), a natural isothiocyanate, found in cruciferous vegetables on the expression of HIF-1α and HSP90 in breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231) under both normoxia and hypoxia. This study established the possible role of ROS in the up-regulation of these markers in breast cancer cells. PEITC-induced nuclear accumulation of Nrf2, increased the activities of several antioxidant enzymes, and thus reduced the ROS burden of the tumor cells by acting as an indirect antioxidant. This resulted in the down-regulation of HSP90 and thereby HIF-1α expression. HSP90 was also found to be involved in the regulation of HIF-1α. A probable link between down-regulation of HIF-1α with reduction of ROS by PEITC through induction of Nrf2 was determined. Finally, our study demonstrated that modulation of HIF-1α by PEITC retarded adhesion, aggregation, migration and invasion of the breast cancer cells, thereby showing anti-metastatic effect. Activities of MMPs (2 & 9) and expression of VEGF were also altered by PEITC.  相似文献   

6.
Cigarette smoking is not only a documented risk for lung carcinogenesis but also promotes lung cancer development. Nicotine, a major component of cigarette smoke but not a carcinogen by itself, has been found to induce proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC). Here we reported that proinvasive effect of nicotine is analogous to that of hypoxia and involves stabilization and activation of hypoxia-inducible factor (HIF)-1α, a key factor in determining the presence of HIF-1 and expression of its downstream metastasis-associated genes. Furthermore, nicotine-induced upregulation of HIF-1α was dependent on mitochondria-derived reactive oxygen species (ROS). Ecotopic expression of mitochondrial targeted catalase effectively prevented nicotine-induced accumulation of HIF-1α protein. In addition, we demonstrated that the effect of nicotine in upregulation of HIF-1α was mediated by Dihydro-β-erythroidine (DhβE)-sensitive nicotine acetylcholine receptors (nAChRs) and required synergistic cooperation of Akt and mitogen-activated protein kinase (MAPK) pathways. These results suggest that exposure to nicotine could mimic effects of hypoxia to stimulate HIF-1α accumulation and activity that might underlie the high metastatic potential of lung cancer.  相似文献   

7.
8.
9.
10.
Macrophage secretion of vascular endothelial growth factor (VEGF) in response to hypoxia contributes to tumor growth and angiogenesis. In addition to VEGF, hypoxic macrophages stimulated with GM-CSF secrete high levels of a soluble form of the VEGF receptor (sVEGFR-1), which neutralizes VEGF and inhibits its biological activity. Using mice with a monocyte/macrophage-selective deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α, we recently demonstrated that the antitumor response to GM-CSF was dependent on HIF-2α-driven sVEGFR-1 production by tumor-associated macrophages, whereas HIF-1α specifically regulated VEGF production. We therefore hypothesized that chemical stabilization of HIF-2α using an inhibitor of prolyl hydroxylase domain 3 (an upstream inhibitor of HIF-2α activation) would increase sVEGFR-1 production from GM-CSF-stimulated macrophages. Treatment of macrophages with the prolyl hydroxylase domain 3 inhibitor AKB-6899 stabilized HIF-2α and increased sVEGFR-1 production from GM-CSF-treated macrophages, with no effect on HIF-1α accumulation or VEGF production. Treatment of B16F10 melanoma-bearing mice with GM-CSF and AKB-6899 significantly reduced tumor growth compared with either drug alone. Increased levels of sVEGFR-1 mRNA, but not VEGF mRNA, were detected within the tumors of GM-CSF- and AKB-6899-treated mice, correlating with decreased tumor vascularity. Finally, the antitumor and antiangiogenic effects of AKB-6899 were abrogated when mice were simultaneously treated with a sVEGFR-1 neutralizing Ab. These results demonstrate that AKB-6899 decreases tumor growth and angiogenesis in response to GM-CSF by increasing sVEGFR-1 production from tumor-associated macrophages. Specific activation of HIF-2α can therefore decrease tumor growth and angiogenesis.  相似文献   

11.
Hyperhomocysteinemia is a risk factor for cardiovascular diseases that induces endothelial dysfunction. Here, we examine the participation of endothelial NO synthase (eNOS) in the homocysteine-induced alterations of NO/O(2)(-) balance in endothelial cells from human umbilical cord vein. When cells were treated for 24 h, homocysteine dose-dependently inhibited thrombin-activated NO release without altering eNOS phosphorylation and independently of the endogenous NOS inhibitor, asymmetric dimethylarginine. The inhibitory effect of homocysteine on NO release was associated with increased production of reactive nitrogen and oxygen species (RNS/ROS) independent of extracellular superoxide anion (O(2)(-)) and was suppressed by the NOS inhibitor L-NAME. In unstimulated cells, L-NAME markedly decreased RNS/ROS formation and the ethidium red fluorescence induced by homocysteine. This eNOS-dependent O(2)(-) synthesis was associated with reduced intracellular levels of both total biopterins (-45%) and tetrahydrobiopterin (-80%) and increased release of 7,8-dihydrobiopterin and biopterin in the extracellular medium (+40%). In addition, homocysteine suppressed the activating effect of sepiapterin on NO release, but not that of ascorbate. The results show that the oxidative stress and inhibition of NO release induced by homocysteine depend on eNOS uncoupling due to reduction of intracellular tetrahydrobiopterin availability.  相似文献   

12.
13.
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis.  相似文献   

14.
15.
Treatment of human hepatoma cells (HepG2) with NO-donors for 24 h inhibited hypoxia-induced erythropoietin (EPO) gene activation. NO was found to increase the production of reactive oxygen species (ROS), the putative signaling molecules between a cellular O2-sensor and hypoxia inducible factor 1 (HIF-1). HIF-1 is the prime regulator of O2-dependent genes such as EPO. NO-treatment for more than 20 h reduced HIF-1-driven reporter gene activity. In contrast, immediately after the addition of NO, ROS levels in HepG2 cells decreased below control values for as long as 4 h. Corresponding to these lowered ROS-levels, HIF-1 reporter gene activity and EPO gene expression transiently increased but were reduced when ROS levels rose thereafter. Our findings of a bimodal effect of NO on ROS production shed new light on the involvement of ROS in the mechanism of O2-sensing and may explain earlier conflicting data about the effect of NO on O2-dependent gene expression.  相似文献   

16.
Sun D  Wang Y  Liu C  Zhou X  Li X  Xiao A 《Life sciences》2012,90(23-24):900-909
AimsIt is well recognized that microvascular injury is a major determinant of renal fibrosis. Mounting evidence shows that nitric oxide (NO) plays an important role in angiogenesis. Therefore, we investigated to the effects of NO on kidney angiogenesis and renal fibrosis.MethodsIn the present study, a unilateral ureteral obstruction (UUO) model was established with l-arginine (l-Arg, 1 g/dl) and N-nitro-l-arginine methyl ester (L-NAME, 5 mg/dl) serving as interference factors. We investigated the alteration of NO concentration with spectrophotometry, peritubular capillary (PTC) density with aminopeptidase P (JG12) immunohistochemical staining, and the expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1) with immunohistochemical staining and Western blotting at weeks 2, 3 and 4.Key findingsOur findings showed that the expressions of VEGF, eNOS and PTC density were significantly decreased in rats with UUO, which was accompanied by a progressive increase in HIF-1α, TGF-β1 and an area of renal interstitial fibrosis. The administration of l-Arg promoted the synthesis of NO and significantly elevated the expressions of VEGF, eNOS and PTC density with the conspicuous loss of HIF-1α and TGF-β1 expressions and ultimately ameliorated renal fibrosis, which was markedly aggravated by L-NAME administration.SignificanceThese findings demonstrate that NO appears to play an important role in kidney angiogenesis and in slowing the progression of renal interstitial fibrosis, which suggests that NO may serve as a novel therapeutic strategy for preventing renal fibrosis as well as fibrosis in other organs.  相似文献   

17.
Endothelial cell apoptosis induced by hypoxia is implicated in the pathogenesis of vascular diseases. However, the underlying mechanism is not clearly elucidated. In this study, we found that hypoxia increased Mxi1-0 expression, and the Mxi1-0 siRNA could inhibit caspase-8 activation and apoptosis in HUVECs induced by hypoxia. In addition, hypoxia induced FOXO3 activation, while Mxi1-0 expression and apoptosis were inhibited by transfection with FOXO3 siRNA. Using ChIP assay, we confirmed that FOXO3a binds to the Mxi1-0 promoter region. Furthermore, hypoxia treatment leads to remarkable production of reactive oxygen species (ROS), while ROS scavenger N-acetyl-L-cysteine (NAC) inhibits hypoxia-induced ROS production, apoptosis and FOXO3a-mediated Mxi1-0 up-regulation. Finally, we found that the HIF-1α siRNA inhibited hypoxia-induced HIF-1α expression and ROS production, as well as FOXO3a/Mxi1-0 activation and apoptosis in HUVECs. Taken together, this study identifies a HIF-1α/FOXO3a/Mxi1-0/caspase-8 signaling pathway in hypoxia-induced endothelial cell apoptosis. These data also indicate that HIF-1α-dependent ROS production is required for FOXO3a-mediated Mxi1-0 up-regulation and apoptosis in hypoxic endothelial cells.  相似文献   

18.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

19.
Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号