共查询到20条相似文献,搜索用时 0 毫秒
5.
目的:探索逆转座子LINE-1编码的ORF-1p在肺癌发病过程中的分子机制。方法:利用RNAi技术,在肺癌细胞A549中下调LINE-1编码蛋白ORF-1p,随后对下调后的A549细胞的生物学特征进行细胞增殖(MTT方法)、细胞周期(流式细胞技术)以及集落形成(软琼脂克隆形成试验)等分析,观察细胞生物学特征的改变。并利用报告基因,进一步对细胞周期相关蛋白进行分析。结果:在A549细胞中,下调ORF-1p后细胞的增殖能力明显下降(P0.05),细胞周期出现S期明显阻滞(P0.05),肿瘤细胞的集落形成能力明显减弱(P0.05),p15/p21报告基因表达显示,两种蛋白被显著上调。结论:下调LINE-1基因编码蛋白ORF-1p能够抑制肺癌细胞的生长以及肿瘤的形成。 相似文献
6.
The biological behaviors of hepatocellular carcinoma (HCC) are complex mainly due to heterogeneity of progressive genetic and epigenetic mutations as well as tumor environment. Hepatocyte growth factor (HGF)/c-Met signaling pathway is regarded to be a prototypical example for stromal-epithelial interactions during developmental morphogenesis, wound healing, organ regeneration and cancer progression. And p53 plays as an important regulator of Met-dependent cell motility and invasion. Present study showed that 2 HCC cell lines, Hep3B and HepG2, displayed different invasive capacity when treated with HGF which was secreted by hepatic stellate cells (HSCs). We found that HGF promoted Hep3B cells invasion and migration as well as epithelial-mesenchymal transition (EMT) occurrence because Hep3B was p53 deficient, which leaded to the c-Met over-expression. Then we found that HGF/c-Met promoted Hep3B cells invasion and migration by upregulating Snail expression. In conclusion, HGF/c-Met signaling is enhanced by loss of p53 expression, resulting in increased ability of invasion and migration by upregulating the expression of Snail. 相似文献
7.
The phosphoinositide 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase 1 (PDK1)/Akt pathway regulates various cellular functions, especially cell survival and cell cycle progression. In contrast to other survival pathways, there have been few reports of scaffold proteins that regulate signaling cascade specificity in this pathway. Here we identify a 5′ repressor element under dual-repression binding protein 1 (Freud-1)/ Akt kinase- interacting protein 1 (Aki1) as a novel scaffold for the PDK1/Akt pathway. Freud-1/Aki1 (also known as CC2D1A) expression induced formation of a PDK1/Akt complex and regulated Akt activation in a concentration-dependent biphasic manner. Freud-1/Aki1 also associated with epidermal growth factor (EGF) receptor in response to EGF stimulation and was required for Akt activation induced by EGF, but not by insulin-like growth factor 1. Freud-1/Aki1 gene silencing decreased Akt kinase activity, resulting in induction of apoptosis and increased sensitivity toward chemotherapeutic agents. Our results suggest that Freud-1/Aki1 is a novel receptor-selective scaffold protein for the PDK1/Akt pathway and present a new activation mechanism of Akt. 相似文献
8.
Arachidonic acid (AA) is a common dietary n−6 cis polyunsaturated fatty acid that under physiological conditions is present in an esterified form in cell membrane phospholipids, however it might be present in the extracellular microenvironment. AA and its metabolites mediate FAK activation, adhesion and migration in MDA-MB-231 breast cancer cells. However, it remains to be investigated whether AA promotes invasion and the signal transduction pathways involved in migration and invasion. Here, we demonstrate that AA induces Akt2 activation and invasion in MDA-MB-231 cells. Akt2 activation requires the activity of Src, EGFR, and PIK3, whereas migration and invasion require Akt, PI3K, EGFR and metalloproteinases activity. Moreover, AA also induces NFκB-DNA binding activity through a PI3K and Akt-dependent pathway. Our findings demonstrate, for the first time, that Akt/PI3K and EGFR pathways mediate migration and invasion induced by AA in MDA-MB-231 breast cancer cells. 相似文献
10.
Epiregulin (EREG) is a ligand of the epidermal growth factor receptor. It belongs to the ErbB family of ligands found overexpressed in various cancers such as colon cancer and lung carcinoma and is likely to play diverse oncogenic roles in several other cancer types. However, little is known about the mechanisms of EREG in the pathogenesis of gastric cancer (GC). The present study was undertaken to investigate whether EREG influences the development and progression in GC. The results revealed that EREG was found to be overexpressed in human GC cells lines. Moreover, EREG induced cell migration, invasion, and proliferation, and inhibited apoptosis in vitro. The study also found that EREG depletion inhibited tumor growth in vivo. Our findings indicated that EREG activated the ERK/JNK/p38 signaling pathway and PI3K/Akt signaling pathways to promote GC malignant progression. Overall, this study suggests that EREG may promote GC development and progression through the ERK/JNK/p38 and PI3K/Akt signaling pathways, which may improve our understanding of the molecular mechanism of EREG in GC. Thus, EREG may be a potential target for GC treatment. 相似文献
11.
Bordetella pertussisgenerates a bacterial toxin utilized in signal transductioninvestigation because of its ability to ADP ribosylate specific Gproteins. We previously noted that pertussis toxin (PTX) directlyactivates endothelial cells, resulting in disruption of monolayerintegrity and intercellular gap formation via a signaling pathway thatinvolves protein kinase C (PKC). We studied the effect of PTX on theactivity of the 42- and 44-kDa extracellular signal-regulated kinases(ERK), members of a kinase family known to be activated by PKC. PTXcaused a rapid time-dependent increase in bovine pulmonary arteryendothelial cell ERK activity that was significantly attenuated by 1) pharmacological inhibition of MEK, the upstream ERKactivating kinase, 2) an MEK dominant-negative construct,and 3) PKC inhibition with bisindolylmaleimide. There waslittle evidence for the involvement of either G-subunits, RasGTPases, Raf-1, p60 src, or phosphatidylinositol 3'-kinasesin PTX-mediated ERK activation. Both the purified -oligomer bindingsubunit of the PTX holotoxin and a PTX holotoxin mutant geneticallyengineered to eliminate intrinsic ADP ribosyltransferase activitycompletely reproduced PTX effects on ERK activation, suggesting thatPTX-induced ERK activation involves a novel PKC-dependent signalingmechanism that is independent of either Ras or Raf-1 activities anddoes not require G protein ADP ribosylation. 相似文献
12.
Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depression as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although the mechanism involved remains ambiguous. For example, MAO-A mRNA is repressed across cancers, yet MAO-A protein and levels of serotonin, a substrate of MAO-A implicated in depression, are paradoxically increased in malignancies, including breast cancer.The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial, oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231 cell line.CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-independent growth, and increased invasiveness and active migration of MDA-MB-231 cells. CLG induced the expression of the mesenchymal marker vimentin in MCF-7 cells, but not in MDA-MB-231 cells. In contrast, CLG induced the epithelial protein marker E-cadherin in both cell lines, with a more robust effect in MDA-MB-231 cells (where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the β-catenin/[phospho]GSK-3β complex as well as the E-cadherin/β-catenin complex in both cell lines cells, but, again, the effect was more robust in MDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT status rather than on the cell's ER status.These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231 cells via a non-canonical mechanism. This potentially implicates an MAO-A-sensitive step in advanced breast cancer and should be borne in mind when considering pharmacological treatment options for co-morbid depression in breast cancer patients. 相似文献
13.
PHAP1 (Putative HLA‐DR‐associated protein 1), also termed acidic leucine‐rich nuclear phosphoprotein 32A (ANP32A), Phosphoprotein 32 (pp32) or protein phosphatase 2A inhibitor (I1PP2A), is a multifunctional protein aberrantly expressed in multiple types of human cancers. However, its expression pattern and clinical relevance in human glioma remain unknown. In this study, Western blotting and immunohistochemistry analysis demonstrated PHAP1 protein was highly expressed in glioma patients, especially in those with high‐grade disease. Publicly available data also revealed high levels of PHAP1 were associated with poor prognosis in glioma patients. The functional studies showed that knock‐down of PHAP1 suppressed the proliferation of glioma cells, while overexpression of PHAP1 facilitated it. The iTRAQ proteomic analysis suggested that stathmin might be a potential downstream target of PHAP1. Consistently, PHAP1 knock‐down significantly decreased the expression of stathmin, while overexpression of PHAP1 increased it. Also, the upstream negative regulator, p27, expression levels increased upon PHAP1 knock‐down and decreased when PHAP1 was overexpressed. As a result, the phosphorylated Akt (S473), an upstream regulator of p27, expression levels decreased upon silencing of PHAP1, but elevated after PHAP1 overexpression. Importantly, we demonstrate the p27 down‐regulation, stathmin up‐regulation and cell proliferation acceleration induced by PHAP1 overexpression were dependent on Akt activation. In conclusion, the above results suggest that PHAP1 expression is elevated in glioma patients, which may accelerate the proliferation of glioma cells by regulating the Akt/p27/stathmin pathway. 相似文献
14.
Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway. 相似文献
15.
ANKHD1 is a multiple ankyrin repeat containing protein, recently identified as a novel member of the Hippo signaling pathway. The present study aimed to investigate the role of ANKHD1 in DU145 and LNCaP prostate cancer cells. ANKHD1 and YAP1 were found to be highly expressed in prostate cancer cells, and ANKHD1 silencing decreased cell growth, delayed cell cycle progression at the S phase, and reduced tumor xenograft growth. Moreover, ANKHD1 knockdown downregulated YAP1 expression and activation, and reduced the expression of CCNA2, a YAP1 target gene. These findings indicate that ANKHD1 is a positive regulator of YAP1 and promotes cell growth and cell cycle progression through Cyclin A upregulation. 相似文献
16.
Breast Cancer (BC) is a highly heterogeneous disease whose most aggressive behavior is displayed by triple-negative breast cancer (TNBC), which lacks an efficient targeted therapy. Despite its controversial role, one of the proteins that having been linked with BC is Annexin A1 (AnxA1), which is a Ca +2 binding protein that acts modulating the immune system, cell membrane organization and vesicular trafficking. In this work we analyzed tissue microarrays of BC samples and observed a higher expression of AnxA1 in TNBCs and in lymph node metastasis. We also observed a positive correlation in primary tumors between expression levels of AnxA1 and its receptor, FPR1. Despite displaying a lesser strength, this correlation also exists in BC lymph node metastasis. In agreement, we have found that AnxA1 was highly expressed and secreted in the TNBC cell line MDA-MB-231 that also expressed high levels of FPR1. Furthermore, we demonstrated, by using the specific FPR1 inhibitor Cyclosporin H (CsH) and the immunosuppressive drug Cyclosporin A (CsA), the existence of an autocrine signaling of AnxA1 through the FPR1. Such signaling, elicited by AnxA1 upon its secretion, increased the aggressiveness and survival of MDA-MB-231 cells. In this manner, we demonstrated that CsA works very efficiently as an FPR1 inhibitor. Finally, by using CsA, we demonstrated that FPR1 inhibition decreased MDA-MB-231 tumor growth and metastasis formation in nude mice. These results indicate that FPR1 inhibition could be a potential intervention strategy to manage TNBCs displaying the characteristics of MDA-MB-231 cells. FPR1 inhibition can be efficiently achieved by CsA. 相似文献
20.
In Saccharomyces cerevisiae the ROM2 gene encodes a GDP/GTP exchange factor for the small G-protein Rho1p, a known activator of protein kinase C. In a screen designed to isolate suppressors of a rom2 mutant allele, we identified a mutant defective in the gene coding for the putative GTPase-activating protein Lrg1p. This protein was previously suggested to be involved in sporulation and mating. Here we provide evidence for its role in Pkc1p-mediated signal transduction based on the following results. (1) Deletion of LRG1 suppresses the growth phenotypes associated with mutations in SLG1 (which codes for a putative sensor of cell wall damage). (2) Using two-hybrid assays an interaction between the GAP domain of Lrg1p and Rho1p was demonstrated. (3) The lrg1 mutant shows enhanced activity of the Pkc1p pathway. (4) Overexpression of LRG1 leads to a cell lysis defect that can be suppressed by the addition of osmotic stabilizers. Phenotypic comparison of lrg1 mutants with mutants defective in other GTPase-activating proteins (Sac7p, Bem2p, Bag7p) presumed to act on Rho1p revealed that deletion of SAC7, but not BEM2 or BAG7, suppresses the phenotype of rom2 mutants. Pairwise combination of mutations in all these genes showed that the simultaneous deletion of SAC7 and LRG1 is synthetically lethal. We therefore suggest that Lrg1p acts as a negative regulator of the Pkc1p pathway in conjunction with its known homologue Sac7p. 相似文献
|