首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TLRs sense components of microorganisms and are critical host mediators of inflammation during infection. Different TLR agonists can profoundly alter inflammatory effects of one another, and studies suggest that the sequence of exposure to TLR agonists may importantly impact on responses during infection. We tested the hypothesis that synergy, priming, and tolerance between TLR agonists follow a pattern that can be predicted based on differential engagement of the MyD88-dependent (D) and the MyD88-independent (I) intracellular signaling pathways. Inflammatory effects of combinations of D and I pathway agonists were quantified in vivo and in vitro. Experiments used several D-specific agonists, an I-specific agonist (poly(I:C)), and LPS, which acts through both the D and I pathways. D-specific agonists included: peptidoglycan-associated lipoprotein, Pam3Cys, flagellin, and CpG DNA, which act through TLR2 (peptidoglycan-associated lipoprotein and Pam3Cys), TLR5, and TLR9, respectively. D and I agonists were markedly synergistic in inducing cytokine production in vivo in mice. All of the D-specific agonists were synergistic with poly(I:C) in vitro in inducing TNF and IL-6 production by mouse bone marrow-derived macrophages. Pretreatment of bone marrow-derived macrophages with poly(I:C) led to a primed response to subsequent D-specific agonists and vice versa, as indicated by increased cytokine production, and increased NF-kappaB translocation. Pretreatment with a D-specific agonist augmented LPS-induced IFN-beta production. All D-specific agonists induced tolerance to one another. Thus, under the conditions studied here, simultaneous and sequential activation of both the D and I pathways causes synergy and priming, respectively, and tolerance is induced by agonists that act through the same pathway.  相似文献   

2.
BackgroundToll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury.MethodsMale C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1 h prior to myocardial ischemia (60 min) followed by reperfusion. Untreated mice served as I/R control (n = 10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14 days.ResultsCpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14 days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3β phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection.ConclusionCpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.  相似文献   

3.
《Cytokine》2013,61(3):806-811
In the intestine, bacterial components activate innate responses that protect the host. We hypothesize that bacterial components reduce Interleukin-8 (IL-8) production in intestinal epithelial cells stimulated by flagellin via the Toll-like receptor (TLR) signaling pathway. Caco-2 cells were pretreated with various doses of lipopolysaccharide (LPS), lipoteichoic acid (LTA), or low-dose flagellin (LDFL) for 24 h. Cells were then treated with flagellin (FL) 500 ng/ml (HDFL) for another 48 h. IL-8 production was measured in the cell culture medium by ELISA. Eighty-four genes in the TLR pathway were evaluated by RT Profiler PCR Array. Pathway Studio 8.0 software was used for altered pathway analysis. HDFL induced IL-8 production by 19-fold (p < 0.01). Pretreatment with LDFL at 20, 10 or 1 ng/ml reduced HDFL-induced IL-8 production by 61%, 52% and 40%, respectively (p < 0.05). LPS at 50 μg/ml decreased HDFL–induced IL-8 production by 38% (p < 0.05). HDFL up-regulated CXCL10, IL1B, IL-8, IRAK2, NF-κB1 and I-κB (all p < 0.05). Pathway Studio analysis showed that HDFL induced cell processes including inflammation, cell death and apoptosis. Pretreatment with LDFL at 10 ng/ml down-regulated FADD, FOS, MAP4K4, MyD88, TLR2, TLR3 and TNFERSF1A compared to HDFL (all p < 0.05). These down-regulated genes are integral for numerous cell functions including inflammatory response, cell death, apoptosis and infection. These results demonstrate that LPS and LDFL provoke tolerance to HDFL-induced IL-8 production. This tolerance effect was accompanied by a complex interaction of multiple genes related to inflammatory as well as other responses in the TLR pathway rather than a single gene alteration.  相似文献   

4.
Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4 °C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120 Gy yielded more DHA compared with cells from 40 Gy, 80 Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4 °C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27 g/Lh and 30% from 21 to 27 g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress.  相似文献   

5.
Ricin is a toxin isolated from castor beans that has potential as a weapon of bioterrorism. This glycoprotein consists of an A-chain (RTA) that damages the ribosome and inhibits protein synthesis and a B-chain that plays a role in cellular uptake. Ricin activates the c-Jun N-terminal kinase (JNK) and p38 signaling pathways; however, a role for these pathways in ricin-induced cell death has not been investigated. Our goals were to determine if RTA alone could activate apoptosis and if the JNK and p38 pathways were required for this response. Comparable caspase activation was observed with both ricin and RTA treatment in the immortalized, nontransformed epithelial cell line, MAC-T. Ribosome depurination and inhibition of protein synthesis were induced in 2–4 h with 1 μg/ml RTA and within 4–6 h with 0.1 μg/ml RTA. Apoptosis was not observed until 4 h of treatment with either RTA concentration. RTA activated JNK and p38 in a time- and concentration-dependent manner that preceded increases in apoptosis. Inhibition of the JNK pathway reduced RTA-induced caspase activation and poly(ADP-ribose) polymerase cleavage. In contrast, inhibition of the p38 pathway had little effect on RTA-induced caspase 3/7 activation. These studies are the first to demonstrate a role for the JNK signaling pathway in ricin-induced cell death. In addition, the MAC-T cell line is shown to be a sensitive in vitro model system for future studies using RTA mutants to determine relationships between RTA-induced depurination, ribotoxic stress, and apoptosis in normal epithelial cells.  相似文献   

6.
《Cytokine》2010,49(3):280-289
Toll-like receptor 9 (TLR9) activation stimulates protective immune responses against intracellular pathogens by phagocytes, including neutrophils. This study examined TLR9-mediated neutrophil activation in neonatal foals. Unmethylated CpGs, ligands for TLR9, were used to stimulate equine neutrophils, either purified or in contact with other peripheral blood leukocytes. Rhodococcus equi was used as another stimulus in parallel. TLR9 mRNA was constitutively expressed at a similar level in purified equine neutrophils across different ages from birth to adulthood, and expression was not affected by either CpG or R. equi. Purified foal neutrophils were directly sensitive to CpG stimulation, reflected by enhanced reactive oxygen species generation following fMLP stimulation, and by expressing significantly (P < 0.05) greater mRNA of IFN-γ, IL-8, IL-12p35, and significantly (P < 0.05) decreased TNF-α mRNA. In comparison, purified foal neutrophils stimulated by R. equi showed significantly (P < 0.05) increased mRNA production of IL-6, IL-8, IL-23p19, and TNF-α. Neutrophils co-cultured with other leukocytes expressed a distinct profile of cytokine mRNA than purified neutrophils in response to CpG stimulation, whereas the profile was very similar following R. equi stimulation irrespective of neutrophil purity. When co-cultured with other leukocytes, foal neutrophils were significantly (P < 0.05) activated at birth by B-class CpGs and produced IL-6, IL-8, IL-12p40, and IL-23p19 at similar magnitudes to those at 2 months of age. In foal neutrophils at birth, R. equi significantly (P < 0.05) induced all cytokines stimulated by CpGs (except IL-12p40), as well as TNF-α. Our results indicate that foal neutrophils were sensitive to CpG or R. equi activation as early as at birth, and that B-class CpGs enhanced foal neutrophil functions in vitro.  相似文献   

7.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

8.
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.  相似文献   

9.
Fulminant hepatic failure (FHF) is a lethal clinical syndrome characterized by the activation of macrophages and the increased production of inflammatory mediators. The purpose of this study was to investigate the effects of neohesperidin dihydrochalcone (NHDC), a widely-used low caloric artificial sweetener against FHF. An FHF experimental model was established in mice by intraperitoneal injection of D-galactosamine (d-GalN) (400 mg/kg)/lipopolysaccharides (LPS) (10 μg/kg). Mice were orally administered NHDC for 6 continuous days and at 1 h before d-GalN/LPS administration. RAW264.7 macrophages were used as an in vitro model. Cells were pre-treated with NHDC for 1 h before stimulation with LPS (10 μg/ml) for 6 h. d-GalN/LPS markedly increased the serum transaminase activities and levels of oxidative and inflammatory markers, which were significantly attenuated by NHDC. Mechanistic analysis indicated that NHDC inhibited LPS-induced myeloid differentiation factor 88 (MyD88) and TIR-containing adapter molecule (TRIF)-dependent signaling. Transient transfection of TLR4 or MyD88 siRNA inhibited the downstream inflammatory signaling. This effect could also be achieved by the pretreatment with NHDC. The fluorescence microscopy and flow cytometry results suggested that NHDC potently inhibited the binding of LPS to TLR4 in RAW264.7 macrophages. In addition, the inhibitory effect of NHDC on LPS-induced translocation of TLR4 into lipid raft domains played an important role in the amelioration of production of downstream pro-inflammatory molecules. Furthermore, the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by NHDC inhibited TLR4 signaling. In conclusion, our results suggest that NHDC attenuates d-GalN/LPS-induced FHF by inhibiting the TLR4-mediated inflammatory pathway, demonstrating a new application of NHDC as a hepatoprotective agent.  相似文献   

10.
Breast cancer is the leading cause of death among women worldwide. Despite the recent treatment options like surgery, chemotherapy etc. the lethality of breast cancer is alarming. Natural compounds are considered a better treatment option against breast carcinoma because of their lower side effects and specificity in targeting important proteins involved in the aberrant activation of pathways in breast cancer. A recently discovered compound called Juglanthraquinone C, which is found in the bark of the Juglans mandshurica Maxim (Juglandaceae) tree has shown promising cytotoxicity in hepatocellular carcinoma. However, not much data is available on the molecular mechanisms followed by this compound. Therefore, we aimed to investigate the molecular mechanism followed by Juglanthraquinone C against breast cancer. We used the network pharmacology technique to analyse the mechanism of action of Juglanthraquinone C in breast cancer and validated our study by applying various computational tools such as UALCAN, cBioportal, TIMER, docking and simulation. The results showed the compound and breast cancer target network shared 31 common targets. Moreover, we observed that Juglanthraquinone C targets multiple deregulated genes in breast cancer such as TP53, TGIF1, IGF1R, SMAD3, JUN, CDC42, HBEGF, FOS and signaling pathways such as PI3K-Akt pathway, TGF-β signaling pathway, MAPK pathway and HIPPO signaling pathway. A docking examination revealed that the investigated drug had a high affinity for the primary target TGIF1 protein. A stable protein–ligand combination was generated by the best hit molecule, according to molecular dynamics modeling. The main aim of this study was to examine Juglanthraquinone C's significance as a prospective breast cancer treatment and to better understand the molecular mechanism this substance uses in breast cancer since there is a need to discover new therapeutics to decrease the load on current therapeutics which also are currently ineffective due to several side effects and development of drug resistance.  相似文献   

11.
BackgroundMechanisms of fibrin-specificity of tissue plasminogen activator (tPA) and recombinant staphylokinase (STA) are different, therefore we studied in vitro the possibility of the synergy of their combined thrombolytic action.MethodsThrombolytic effects of tPA, STA and their combinations were measured by lysis rate of human plasma clot and side effects were evaluated by decreasing in fibrinogen, plasminogen and α2-antiplasmin levels in the surrounding plasma at 37 °C in vitro.ResultsSTA and tPA induced dose- and time-dependent clot lysis: 50% lysis in 2 h was obtained with 30 nM tPA and 75 nM STA, respectively. At these concentrations, tPA produced greater degradation of plasma fibrinogen than STA. According to a mathematical analysis of dose–response curves by the isobole method, combinations of tPA and STA caused a considerable synergistic thrombolytic effect. The simultaneous and sequential combinations of tPA (< 4 nM) and STA (< 35 nM) induced a significant fibrin-specific synergistic thrombolysis, which was more pronounced in 2 h at simultaneous combinations than at sequential addition of STA after 30 min of tPA action. Simultaneous combination of 2.5 nM tPA and 15 nM STA showed a maximal 3-fold increase in thrombolytic effect compared to the expected total effect of the individual agents. Sequential combinations caused a lower depletion of plasma proteins compared to simultaneous combinations.ConclusionsThe simultaneous and sequential combinations of tPA and STA possessed synergistic fibrin-specific thrombolytic action on clot lysis in vitro.General significanceThe results show that combined thrombolysis may be more effective and safer than thrombolysis with each activator alone.  相似文献   

12.
Recent reports have shown that antibiotics such as macrolide, aminoglycoside, and tetracyclines have immunomodulatory effects in addition to essential antibiotic effects. These agents may have important effects on the regulation of cytokine and chemokine production. However, the precise mechanism is unknown. This time, we used Multi Plex to measure the production of cytokines and chemokines following tetracycline treatment of lipopolysaccharide (LPS)-induced THP-1 cells. The signaling pathways were investigated with Western blotting analysis. Three tetracyclines significantly suppressed the expression of cytokines and chemokines induced by LPS. Minocycline (50 μg/ml), tigecycline (50 μg/ml), or doxycycline (50 μg/ml) were added after treatment with LPS (10 μg/ml). Tumor necrosis factor-α was downregulated to 16%, 14%, and 8%, respectively, after 60 min compared to treatment with LPS without agents. Interleukin-8 was downregulated to 43%, 32%, and 26% at 60 min. Macrophage inflammatory protein (MIP)-1α was downregulated to 23%, 33%, and 16% at 120 min. MIP-1β was downregulated to 21%, 11%, and 2% at 120 min. Concerning about signaling pathways, the mechanisms of the three tetracyclines might not be the same. Although the three tetracyclines showed some differences in the time course, tetracyclines modulated phosphorylation of the NF-κB pathway, p38 and ERK1/2/MAPK pathways, resulting in inhibition of cytokine and chemokine production. In addition, SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly suppressed the expression of TNF-α and IL-8 in LPS-stimulated THP-1 cells. And further, the NF-κB inhibitor, BAY11-7082, almost completely suppressed LPS-induced these two cytokines production. Thus, more than one signaling pathway may be involved in tetracyclines downregulation of the expression of LPS-induced cytokines and chemokines in THP-1 cells. And among the three signaling pathways, NF-κB pathway might be the dominant pathway on tetracyclines modification the LPS-induced cytokines production in THP-1 cells. In general, minocycline and doxycycline suppressed the production of cytokines and chemokines in LPS-stimulated THP-1 cell lines via mainly the inhibition of phosphorylation of NF-κB pathways. Tigecycline has the same structure as the other tetracyclines, however, it showed the different properties of cytokine modulation in the experimental time course.  相似文献   

13.
Astrocytes play a crucial role in maintaining the homeostasis of the brain. Changes to gap junctional intercellular communication (GJIC) in astrocytes and excessive inflammation may trigger brain damage and neurodegenerative diseases. In this study, we investigated the effect of lipopolysaccharide (LPS) on connexin43 (Cx43) gap junctions in rat primary astrocytes. Following LPS treatment, dose- and time-dependent inhibition of Cx43 expression was seen. Moreover, LPS induced a reduction in Cx43 immunoreactivity at cell–cell contacts and significantly inhibited GJIC, as revealed by the fluorescent dye scrape loading assay. Toll-like receptor 4 (TLR4) protein expression was increased 2–3-fold following LPS treatment. To study the pathways underlying these LPS-induced effects, we examined downstream effectors of TLR4 signaling and found that LPS induced a significant increase in phosphorylated extracellular signal-regulated kinase (pERK) levels up to 6 h, followed by signal attenuation and downregulation of caveolin-3 expression. Interestingly, LPS treatment also induced a dramatic increase in inducible nitric oxide synthase (iNOS) levels at 6 h, which were sustained up to 18–24 h. The LPS-induced downregulation of Cx43 and caveolin-3 was prevented by co-treatment of astrocytes with the iNOS cofactor inhibitor 1400W, but not the ERK inhibitor PD98059. Specific knockdown of caveolin-3 using siRNA had a significant inhibitory effect on GJIC and resulted in a downregulation of Cx43. Our results suggest that long-term LPS treatment of astrocytes leads to inhibition of Cx43 gap junction communication by the activation of iNOS and downregulation of caveolin-3 via a TLR4-mediated signaling pathway.  相似文献   

14.
Isoprene, a key building block of synthetic rubber, is currently produced entirely from petrochemical sources. In this work, we engineered both the methylerythritol phosphate (MEP) pathway and the mevalonate (MVA) pathway for isoprene production in E. coli. The synergy between the MEP pathway and the MVA pathway was demonstrated by the production experiment, in which overexpression of both pathways improved the isoprene yield about 20-fold and 3-fold, respectively, compared to overexpression of the MEP pathway or the MVA pathway alone. The 13C metabolic flux analysis revealed that simultaneous utilization of the two pathways resulted in a 4.8-fold increase in the MEP pathway flux and a 1.5-fold increase in the MVA pathway flux. The synergy of the dual pathway was further verified by quantifying intracellular flux responses of the MEP pathway and the MVA pathway to fosmidomycin treatment and mevalonate supplementation. Our results strongly suggest that coupling of the complementary reducing equivalent demand and ATP requirement plays an important role in the synergy of the dual pathway. Fed-batch cultivation of the engineered strain overexpressing the dual pathway resulted in production of 24.0 g/L isoprene with a yield of 0.267 g/g of glucose. The synergy of the MEP pathway and the MVA pathway also successfully increased the lycopene productivity in E. coli, which demonstrates that it can be used to improve the production of a broad range of terpenoids in microorganisms.  相似文献   

15.
16.
The epidermal growth factor receptor (EGFR) is a well-studied receptor tyrosine kinase and an important anticancer therapeutic target. The activity of EGFR autophosphorylation and transphosphorylation, which induces several cell signaling pathways, has been suggested to be related to its oligomeric state. However, the oligomeric states of EGFRs induced by EGF binding and the receptor–ligand stoichiometry required for its activation are still controversial. In the present study, we performed Förster resonance energy transfer (FRET) measurements by combining the coiled-coil tag–probe labeling method and spectral imaging to quantitatively analyze EGFR oligomerization on living CHO-K1 cell membranes at physiological expression levels. In the absence of its ligands, EGFRs mainly existed as monomers with a small fraction of predimers (~ 10%), whereas ~ 70% of the EGFRs formed dimers after being stimulated with the ligand EGF. Ligand-induced dimerization was not significantly affected by the perturbation of membrane components (cholesterol or monosialoganglioside GM3). We also investigated both dose and time dependences of EGF-dependent EGFR dimerization and autophosphorylation. The formation of dimers occurred within 20 s of the ligand stimulation and preceded its autophosphorylation, which reached a plateau 90 s after the stimulation. The EGF concentration needed to evoke half-maximum dimerization (~ 1 nM) was lower than that for half-maximum autophosphorylation (~ 8 nM), which suggested the presence of an inactive dimer binding a single EGF molecule.  相似文献   

17.
A gene encoding α-l-arabinofuranosidase (abfA) from Aspergillus niveus was identified, cloned, and successfully expressed in Aspergillus nidulans. Based on amino acid sequence comparison, the 88.6 kDa enzyme could be assigned to the GH family 51. The characterization of the purified recombinant AbfA revealed that the enzyme was active at a limited pH range (pH 4.0–5.0) and an optimum temperature of 70 °C. The AbfA was able to hydrolyze arabinoxylan, xylan from birchwood, debranched arabinan, and 4-nitrophenyl arabinofuranoside. Synergistic reactions using both AbfA and endoxylanase were also assessed. The highest degree of synergy was obtained after the sequential treatment of the substrate with endoxylanase, followed by AbfA, which was observed to release noticeably more reducing sugars than that of either enzyme acting individually. The immobilization of AbfA was performed via ionic adsorption onto various supports: agarose activated by polyethyleneimine polymers, cyanogen bromide activated Sepharose, DEAE-Sepharose, and Sepharose-Q. The Sepharose-Q derivative remained fully active at pH 5 after 360 min at 60 °C, whereas the free AbfA was inactivated after 60 min. A synergistic effect of arabinoxylan hydrolysis by AbfA immobilized in Sepharose-Q and endoxylanase immobilized in glyoxyl agarose was also observed. The stabilization of arabinofuranosidases using immobilization tools is a novel and interesting topic.  相似文献   

18.
《Phytomedicine》2014,21(8-9):1088-1091
STAT3 signaling pathway is an important target for human cancer therapy. Thus, the identification of small-molecules that target STAT3 signaling will be of great interests in the development of anticancer agents. The aim of this study was to identify novel inhibitors of STAT3 pathway from the roots of Zanthoxylum nitidum (Roxb.) DC. The bioassay-guided fractionation of MeOH extract of Z. nitidum using a STAT3-responsive gene reporter assay led to the isolation of angoline (1) as a potent and selective inhibitor of the STAT3 signaling pathway (IC50 = 11.56 μM). Angoline inhibited STAT3 phosphorylation and its target gene expression and consequently induced growth inhibition of human cancer cells with constitutively activated STAT3 (IC50 = 3.14–4.72 μM). This work provided a novel lead for the development of anti-cancer agents targeting the STAT3 signaling pathway.  相似文献   

19.
Statistical modeling of atrioventricular (AV) nodal function during atrial fibrillation (AF) is revisited for the purpose of defining model properties and improving parameter estimation. The characterization of AV nodal pathways is made more detailed and the number of pathways is now determined by the Bayesian information criterion, rather than just producing a probability as was previously done. Robust estimation of the shorter refractory period (i.e., of the slow pathway) is accomplished by a Hough-based technique which is applied to a Poincaré plot of RR intervals. The performance is evaluated on simulated data as well as on ECG data acquired from AF patients during rest and head-up tilt test. The simulation results suggest that the refractory period of the slow pathway can be accurately estimated even in the presence of many artifacts. They also show that the number of pathways can be accurately determined. The results from ECG data show that the refined AV node model provides significantly better fit than did the original model, increasing from 85 ± 5% to 88 ± 4% during rest, and from 86 ± 5% to 87 ± 3% during tilt. When assessing the effect of sympathetic stimulation, the AF frequency increased significantly during tilt (6.25 ± 0.58 Hz vs. 6.32 ± 0.61 Hz, p < 0.05, rest vs. tilt) and the prolongation of the refractory periods of both pathways decreased significantly (slow pathway: 0.23 ± 0.20 s vs. 0.11 ± 0.10 s, p < 0.001, rest vs. tilt; fast pathway: 0.24 ± 0.31 s vs. 0.16 ± 0.19 s, p < 0.05, rest vs. tilt). The results show that AV node characteristics can be assessed noninvasively for the purpose of quantifying changes induced by autonomic stimulation.  相似文献   

20.
Inflammation has been implicated in the pathophysiology of kidney disorders. Previous studies have documented the contributions of various inflammatory cascades in the development of kidney and other organ dysfunctions. The Toll-like receptor 4 (TLR4) inflammatory pathway is a major contributor of inflammation in the kidney. Interestingly, lipopolysaccharide (LPS), a specific ligand for TLR4, has been shown to induce acute kidney injury (AKI) in animal models. We have previously studied the beneficial effects of nonpharmacological agents, particularly blueberries (BB), in attenuating inflammation and oxidative stress. We hypothesize that BB protect against the LPS-induced AKI by inhibiting TLR4 activation and kidney injury markers. Twelve-week-old male Sprague-Dawley rats received a BB solution or saline intragastric gavage for 2 days. One group of BB and saline-gavaged animals was injected with LPS (10 mg/kg bw). Another group of rats was injected with VIPER (0.1 mg/kg iv), a TLR4-specific inhibitory peptide, 2 h before LPS administration. Compared to LPS-administered rats, the BB-pretreated animals exhibited improved glomerular filtration rate, elevated renal blood flow, and a reduced renal vascular resistance. In addition, a reduction in the rate of production of free radicals, namely total reactive oxygen species (ROS) and superoxide, was observed in the BB-supplemented LPS group. Gene and protein expressions for TLR4, proinflammatory cytokine, and acute kidney injury markers were also attenuated in animals that were pretreated with BB as measured by real time RT-PCR and Western blotting, respectively. These results in the BB-pretreated group were consistent with those in the VIPER-treated rats, and indicate that BB protects against AKI by inhibiting TLR4 and its subsequent effect on inflammatory and oxidative stress pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号