首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Akt regulates critical cellular processes including cell survival and proliferation, glucose metabolism, cell migration, cancer progression and metastasis through phosphorylation of a variety of downstream targets. The Akt pathway is one of the most prevalently hyperactivated signaling pathways in human cancer, thus, research deciphering molecular mechanisms which underlie the aberrant Akt activation has received enormous attention. The PI3K-dependent Akt serine/threonine phosphorylation by PDK1 and mTORC2 has long been thought to be the primary mechanism accounting for Akt activation. However, this regulation alone does not sufficiently explain how Akt hyperactivation can occur in tumors with normal levels of PI3K/PTEN activity. Mounting evidence demonstrates that aberrant Akt activation can be attributed to other posttranslational modifications, which include tyrosine phosphorylation, O-GlcNAcylation, as well as lysine modifications: ubiquitination, SUMOylation and acetylation. Among them, K63-linked ubiquitination has been shown to be a critical step for Akt signal activation by facilitating its membrane recruitment. Deficiency of E3 ligases responsible for growth factor-induced Akt activation leads to tumor suppression. Therefore, a comprehensive understanding of posttranslational modifications in Akt regulation will offer novel strategies for cancer therapy.  相似文献   

3.
4.
5.
Akt (also known as PKB) signaling orchestrates many aspects of biological functions and, importantly, its deregulation is linked to cancer development. Akt activity is well-known regulated through its phosphorylation at T308 and S473 by PDK1 and mTORC2, respectively. Although in the last decade the research has been primarily focused on Akt phosphorylation and its role in Akt activation and functions, other posttranslational modifications on Akt have never been reported. Until very recently, a novel posttranslational modification on Akt termed ubiquitination was identified and shown to play an important role in Akt activation. The cancer-associated Akt mutant recently identified in a subset of human cancers displays enhanced Akt ubiquitination, in turn contributing to Akt hyperactivation, suggesting a potential role of Akt ubiquitination in cancers. Thus, this novel posttranslational modification on Akt reveals an exciting avenue that has advanced our current understandings of how Akt signaling activation is regulated.  相似文献   

6.
7.
Yang XJ  Seto E 《Molecular cell》2008,31(4):449-461
  相似文献   

8.
9.
The control of mRNA stability in response to extracellular stimuli   总被引:8,自引:0,他引:8  
Regulated mRNA turnover is a highly important process in control of gene expression. The specific sequence elements in mRNA modulate the stability of different mRNAs, which varies considerably in response to extracellular stimuli. But the mechanistic basis for regulation of mRNA turnover remains nebulous. Recent works indicate that several signaling pathways have been implicated in regulating the decay of specific mRNA and certain ARE binding proteins mediate rapid degradation of the mRNAs. This review provides a current knowledge of diverse extracellular signals contributing to stabilization of short-lived mRNA.  相似文献   

10.
11.
12.
13.
14.
Histones are the fundamental structural proteins intimately associated with eukaryotic DNA to form a highly ordered and condensed nucleoproteic complex termed chromatin. They are the targets of various posttranslational modifications including acetylation, methylation, phosphorylation and ubiquitination that modulate the structure/function of chromatin. The combinatorial nature of histone modifications is hypothesized to define a "histone code" that considerably extends the information potential of the genetic code, giving rise to epigenetic information. Moreover, most core histones consist of several nonallelic variants that can mark specific loci and could play an important role in establishment and maintenance of epigenetic memory. Here we will briefly present our current knowledge about histone posttranslational modifications and their implications in the regulation of epigenetic information. We will next describe core histone variants, insisting on their mode of incorporation into chromatin to discuss their epigenetic function and inheritance.  相似文献   

15.
In the mammalian central nervous system, the majority of fast excitatory synaptic transmission is mediated by glutamate acting on AMPA-type ionotropic glutamate receptors. The abundance of AMPA receptors at the synapse can be modulated through receptor trafficking, which dynamically regulates many fundamental brain functions, including learning and memory. Reversible posttranslational modifications, including phosphorylation, palmitoylation and ubiquitination of AMPA receptor subunits are important regulatory mechanisms for controlling synaptic AMPA receptor expression and function. In this review, we highlight recent advances in the study of AMPA receptor posttranslational modifications and discuss how these modifications regulate AMPA receptor trafficking and function at synapses.  相似文献   

16.
17.
Minimizing damage during reperfusion of the heart following an ischemic event is an important part of the recovery process, as is preventing future recurrences; however, restoring blood perfusion to the heart following ischemia can lead to apoptosis, necrosis, and finally, diminished cardiac function. Exercise reduces risk of heart disease and has been shown to improve the recovery of the heart following ischemia and reperfusion. Brief intermittent ischemic events administered prior to or following a myocardial infarction have also been demonstrated to reduce the infarct size and improve cardiac function, thereby providing cardioprotection. Many signaling transduction pathways are known to regulate cardioprotection, including but not limited to calcium regulation, antioxidant scavenging, and kinase activation. Although posttranslational modifications (PTM) such as phosphorylation, O-GlcNAcylation, methylation, and acetylation are essential regulators of these pathways, their contributions are often overlooked in the literature. This review will examine how PTMS are important regulators of cardioprotection and demonstrate why they should be targeted when developing future therapies for the minimization of damage caused by cardiac ischemia and reperfusion.  相似文献   

18.
19.
Histones are wrapped around by genomic DNA to form nucleosomes which are the basic units of chromatin. In eukaryotes histones undergo various covalent modifications such as methylation, phosphorylation, acetylation, ubiquitination and ribosylation. Histone modifications play a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes. Histone methylation is one of the most important modifications occurring on Lysine (K) and Arginine (R) residues of histones, dynamically regulated by histone methyltransferases and demethylases. Identifications of such histone modification enzymes and to study how they work are the most fundamental questions needs to be answered. Uncovering the regulation and functions of the various histone methylation enzymes will help us to better understand the epigenetic code. This review summarizes the regulation of histone methyltransferases activity, the recruitment of methyltransferases and the distribution patterns and function of histone methylations.  相似文献   

20.
组蛋白修饰调节机制的研究进展   总被引:2,自引:0,他引:2  
表观遗传学涉及到DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控等内容,其中组蛋白修饰包括组蛋白的乙酰化、磷酸化、甲基化、泛素化及ADP核糖基化等,这些多样化的修饰以及它们时间和空间上的组合与生物学功能的关系又可作为一种重要的表观标志或语言,因而被称为“组蛋白密码”.相同组蛋白残基的磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化等,以及不同组蛋白残基的磷酸化与乙酰化、泛素化与甲基化、磷酸化与甲基化等组蛋白修 饰之间既相互协同又互相拮抗,形成了一个复杂的调节网络.对组蛋白修饰内在调节机制的研究将丰富“组蛋白密码”的内涵.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号