首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca(2+) loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca(2+) signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP(3) receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca(2+) signals to mitochondria in apoptosis.  相似文献   

2.
Neuronal apoptosis in rat pheochromocytoma PC12 cells, which was confirmed by TUNEL (terminal transferase-mediated dUTP-biotin nick end-labeling) staining and detection of chromatin condensation, appeared within 8 h after nerve growth factor (NGF) deprivation. Prostaglandin (PG) E1 (10(-7)-10(6) M) reduced the incidence of apoptotic cell death in PC12 cells. The genes encoding PG transporter specific to prostaglandins such as PGE2 or PGF2alpha were expressed in the cell lines as shown by RT-PCR. Bromcresol green, an inhibitor of PG transporter, reversed the antiapoptotic effect of PGE1. Moreover, treatment of PC12 cells with an antisense oligonucleotide corresponding to PG transporter cDNA also blocked the inhibitory effects of PGE1 on apoptotic cell death. In addition, PGE1 counteracted the increased activities of stress-activated protein kinase/cJun N-terminal kinase within 1-2 h after NGF deprivation in PC12 cells. These results indicated that the antiapoptotic effect of PGE1 in NGF-deprived PC12 cells was achieved by inhibitory signals following uptake into neurons through the PG transporter.  相似文献   

3.
At fertilisation, Ca(2+) signals activate embryonic development by stimulating metabolism, exocytosis and endocytosis, cytoskeletal remodelling, meiotic resumption and recruitment of maternal RNAs. Mitochondria present in large number in eggs have long been thought to act as a relay in Ca(2+) signalling at fertilisation. However, only recently have studies on ascidians and mouse proven that sperm-triggered Ca(2+) waves are transduced into mitochondrial Ca(2+) signals that stimulate mitochondrial respiration. Mitochondrial Ca(2+) uptake can substantially buffer cytosolic Ca(2+) concentration and the concerted action of heterogeneously distributed mitochondria in the mature egg may modulate the spatiotemporal pattern of sperm-triggered Ca(2+) waves. Regulation of fertilisation Ca(2+) signals could also be achieved through mitochondrial ATP production and mitochondrial oxidant activity but these hypotheses remain to be explored. A critically poised dynamic interplay between Ca(2+) signals and mitochondrial metabolism is stimulated at fertilisation and may well determine whether the embryo can proceed further into development. The monitoring of Ca(2+) signals and mitochondrial activity during fertilisation in living zygotes of diverse species should confirm the universality of the role for sperm-triggered Ca(2+) waves in the activation of mitochondrial activity at fertilisation.  相似文献   

4.
Cardiolipin (CL) has recently been shown to provide an anchor and an essential activating platform for caspase-8 on mitochondria. We hypothesize that these platforms may correspond to “raft-like” microdomains, which have demonstrated to be detectable on mitochondrial membrane of cells undergoing apoptosis. The role for CL in “raft-like” microdomains could be to anchor caspase-8 at contact sites between inner and outer membranes, facilitating its self-activation, Bid cleavage and apoptosis execution. The role played by “raft-like” microdomains in the apoptotic program could introduce a new task in the pathogenetic studies on human diseases associated with cardiolipin dismetabolism.  相似文献   

5.
6.
There are three isoforms of the inositol 1,4,5- trisphosphate receptor (InsP(3)R), each of which has a distinct effect on Ca(2+) signaling. However, it is not known whether each isoform similarly plays a distinct role in the activation of Ca(2+)-mediated events. To investigate this question, we examined the effects of each InsP(3)R isoform on transmission of Ca(2+) signals to mitochondria and induction of apoptosis. Each isoform was selectively silenced using isoform-specific small interfering RNA in Chinese hamster ovary cells, which express all three InsP(3)R isoforms. ATP-induced cytosolic Ca(2+) signaling patterns were altered, regardless of which isoform was silenced, but in a different fashion depending on the isoform. ATP also induced Ca(2+) signals in mitochondria, which were inhibited more effectively by silencing the type III InsP(3)R than by silencing either the type I or type II isoform. The type III isoform also co-localized most strongly with mitochondria. When apoptosis was induced by activation of either the extrinsic or intrinsic apoptotic pathway, induction was reduced most effectively by silencing the type III InsP(3)R. These findings provide evidence that the type III isoform of the InsP(3)R plays a special role in induction of apoptosis by preferentially transmitting Ca(2+) signals into mitochondria.  相似文献   

7.
Calcium signal transmission between endoplasmic reticulum (ER) and mitochondria is supported by a local [Ca(2+)] control that operates between IP(3)receptor Ca(2+)release channels (IP(3)R) and mitochondrial Ca(2+)uptake sites, and displays functional similarities to synaptic transmission. Activation of IP(3)R by IP(3)is known to evoke quantal Ca(2+)mobilization that is associated with incremental elevations of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)). Here we report that activation of IP(3)R by adenophostin-A (AP) yields non-quantal Ca(2+)mobilization in mast cells. We also show that the AP-induced continuous Ca(2+)release causes relatively small [Ca(2+)](m)responses, in particular, the sustained phase of Ca(2+)release is not sensed by the mitochondria. Inhibition of ER Ca(2+)pumps by thapsigargin slightly increases IP(3)-induced [Ca(2+)](m)responses, but augments AP-induced [Ca(2+)](m)responses in a large extent. In adherent permeabilized cells exposed to elevated [Ca(2+)], ER Ca(2+)uptake fails to affect global cytosolic [Ca(2+)], but attenuates [Ca(2+)](m)responses. Moreover, almost every mitochondrion exhibits a region very close to ER Ca(2+)pumps visualized by BODIPY-FL-thapsigargin or SERCA antibody. Thus, at the ER-mitochondrial junctions, localized ER Ca(2+)uptake provides a mechanism to attenuate the mitochondrial response during continuous Ca(2+)release through the IP(3)R or during gradual Ca(2+)influx to the junction between ER and mitochondria.  相似文献   

8.
The localization and properties of hexokinase have been studiedin the conducting bundles of leaf petioles of sugar-beet. Ithas been shown that 12 to 20 per cent of hexokinase activityis found in the mitochondrial fraction and more than 10 percent in the microsomal fraction. The remaining hexokinase activityis concentrated in the soluble fraction of the cell. The propertiesof hexokinase associated with the structural elements and withthe soluble portion of the cell are different. The hexokinasein mitochondria and microsomes is non-specific; it phosphorylatesboth glucose and fructose but possesses a much greater affinityfor glucose. Consequently the phosphorylation of fructose inthese fractions is almost completely inhibited in the presenceof glucose, whereas fructose has only a relatively small suppressiveeffect on glucose phosphorylation. In the soluble fraction of the cells which corresponds to thecytoplasm, the phosphorylation of each of the hexoses occursindependently of the presence of the other sugar. The phosphorylationof fructose in this fraction is intensified in the presenceof K+ ions (activator of fructokinase). On this basis it issuggested that the soluble fraction contains specific fructo-kinasealong with non-specific hexokinase. The results are compared with those obtained earlier on thecompetition of these sugars during their transport into thecells of conducting bundles. Here glucose is a strong inhibitorof the fructose transport, while the latter only slightly affectsthe influx of glucose. This gives grounds for the belief thatnon-specific hexokinase, localized on the membranes, can takepart in the transport of hexoses into the cell.  相似文献   

9.
10.
11.
The nonreceptor c-Abl tyrosine kinase binds to cytosolic 14-3-3 proteins and is targeted to the nucleus in the apoptotic response to DNA damage. The MUC1 oncoprotein is overexpressed by most human carcinomas and blocks the induction of apoptosis by genotoxic agents. Using human carcinoma cells with gain and loss of MUC1 function, we show that nuclear targeting of c-Abl by DNA damage is abrogated by a MUC1-dependent mechanism. The results demonstrate that c-Abl phosphorylates MUC1 on Tyr-60 and forms a complex with MUC1 by binding of the c-Abl SH2 domain to the pTyr-60 site. Binding of MUC1 to c-Abl attenuates phosphorylation of c-Abl on Thr-735 and the interaction between c-Abl and cytosolic 14-3-3. We also show that expression of MUC1 with a mutation at Tyr-60 (i) disrupts the interaction between MUC1 and c-Abl, (ii) relieves the MUC1-induced block of c-Abl phosphorylation on Thr-735 and binding to 14-3-3, and (iii) attenuates the MUC1 antiapoptotic function. These findings indicate that MUC1 sequesters c-Abl in the cytoplasm and thereby inhibits apoptosis in the response to genotoxic anticancer agents.  相似文献   

12.
Rheumatoid factor blocks regulatory Fc signals   总被引:1,自引:0,他引:1  
Immunosuppressed cultures of murine spleen cells, partly deprived of T cells and antigen-stimulated, can be reconstituted to near full activity in their antibody-forming cell response with murine rheumatoid factors (RF). The dose of RF required for recovery of 50% of the reconstitutable immune response was 10-100 ng and reconstitution was blocked by intact murine IgG added to the cultures. IgG subclass specificity of RF was demonstrated; RF specific for IgG2a was more potent than RF specific for IgG1 in reconstituting the response. Synergy was observed between RF added at culture initiation and late-acting B-cell differentiation factors. The greater the degree of T-cell deprivation, the more stringent the conditions needed for reconstitution. Suitable conditions for reconstitution with profound T-cell depletion included the limited reconstitution by specific RF, the synergistic action of RF with late-acting T-cell-replacing supernatants, and multiple additions of a number of RFs to the cultures on Days 0, 1, and 2. RF was also shown to block Fc-dependent immunosuppression by added antigen-antibody complexes. These results are interpreted as favoring the hypothesis put forward previously that the normal production of RF acts to reduce T-cell dependency by preventing negative Fc signal transmission by immune complexes on the B-cell surface. Abnormal production of RF may be a primary destabilizer of the immune responses leading to autoimmunity.  相似文献   

13.
We determined whether cells that are induced to undergo anoikis by matrix detachment can initiate apoptosis in healthy cells following electroporation-induced fusion. Separate populations of MDCK cells undergoing anoikis and stained with FITC-annexin or viable MDCK cells that were labeled with spectrally discrete fluorescent beads were electroporated. Cells were analyzed by flow cytometry for enumeration of viable cells with beads, apoptotic cells or fused cells. Electroporation promoted a 49-fold increase of the percentage of viable cells that had fused with apoptotic cells. Apoptotic cell-viable cell fusions were 8-fold more likely to not attach to cell culture plastic and 2.3-fold less likely to proliferate after 24hr incubation than viable cell fusion controls. These data demonstrate that apoptotic signals can be transferred between cells by electrofusion, possibly suggesting a novel investigative approach for optimizing targeted cell deletion in cancer treatment.  相似文献   

14.
Inactivation of the budding yeast telomere binding protein Cdc13 results in abnormal telomeres (exposed long G-strands) and activation of the DNA damage checkpoint. In the current study, we show that inactivation of Cdc13p induces apoptotic signals in yeast, as evidenced by caspase activation, increased reactive oxygen species production, and flipping of phosphatidylserine in the cytoplasmic membrane. These apoptotic signals were suppressed in a mitochondrial (rho(o)) mutant. Moreover, mitochondrial proteins (e.g. MTCO3) were identified as multicopy suppressors of cdc13-1, suggesting the involvement of mitochondrial functions in telomere-initiated apoptotic signaling. These telomere-initiated apoptotic signals were also shown to depend on MEC1, but not TEL1, and were antagonized by MRE11. Our results are consistent with a model in which single-stranded G-tails in the cdc13-1 mutant trigger MEC1-dependent apoptotic signaling in yeast.  相似文献   

15.
Hepatic myofibroblasts (hMFs) are central in the development of liver fibrosis during chronic liver diseases, and their removal by apoptosis contributes to the resolution of liver fibrosis. We previously identified Edg receptors for sphingosine 1-phosphate (S1P) in human hMFs. Here, we investigated the effects of S1P on hMF apoptosis. S1P reduced viability of serum-deprived hMFs by an apoptotic process that was unrelated to the conversion of S1P into sphingosine and ceramide. The apoptotic effects of S1P were receptor-independent because dihydro-S1P, an Edg agonist, had no effect. S1P also stimulated a receptor-dependent survival pathway, revealed by enhanced activation of caspase-3 by S1P in the presence of pertussis toxin. Cell survival relied on two pertussis toxin-sensitive events, activation of ERK and activation of phosphatidylinositol 3-kinase (PI3K)/Akt by S1P. Both pathways were also activated by dihydro-S1P. Blunting either ERK or PI3K enhanced caspase-3 stimulation by S1P, and simultaneous inhibition of both pathways resulted in additive effects on caspase-3 activation. In conclusion, S1P induces apoptosis of human hMFs via a receptor-independent mechanism and stimulates a survival pathway following activation of Edg receptors. The survival pathway arises from the sequential activation of G(i)/G(o) proteins and independent stimulations of ERK and PI3K/Akt. Therefore, blocking Edg receptors may sensitize hepatic myofibroblasts to apoptosis by S1P.  相似文献   

16.
Bax induces mitochondrial-dependent cell death signals in mammalian cells. However, the mechanism of how Bax is kept inactive has remained unclear. Yeast-based functional screening of Bax inhibitors from mammalian cDNA libraries identified Ku70 as a new Bax suppressor. Bax-mediated apoptosis was suppressed by overexpression of Ku70 in mammalian cells, but enhanced by downregulation of Ku70. We found that Ku70 interacts with Bax, and that the carboxyl terminus of Ku70 and the amino terminus of Bax are required for this interaction. Bax is known to translocate from the cytosol to mitochondria when cells receive apoptotic stimuli. We found that Ku70 blocks the mitochondrial translocation of Bax. These results suggest that in addition to its previously recognized DNA repair activity in the nucleus, Ku70 has a cytoprotective function in the cytosol that controls the localization of Bax.  相似文献   

17.
18.
Many viruses inhibit or retard apoptosis, a strategy that subverts one of the most ancient antiviral mechanisms. M11L, a myxoma virus-encoded antiapoptotic protein, has been previously shown to localize to mitochondria and block apoptosis of virus-infected cells (H. Everett, M. Barry, S. F. Lee, X. J. Sun, K. Graham, J. Stone, R. C. Bleackley, and G. McFadden, J. Exp. Med. 191:1487-1498, 2000; H. Everett, M. Barry, X. Sun, S. F. Lee, C. Frantz, L. G. Berthiaume, G. McFadden, and R. C. Bleackley, J. Exp. Med. 196:1127-1139, 2002; and G. Wang, J. W. Barrett, S. H. Nazarian, H. Everett, X. Gao, C. Bleackley, K. Colwill, M. F. Moran, and G. McFadden, J. Virol. 78:7097-7111, 2004). This protection from apoptosis involves constitutive-forming inhibitory complexes with the peripheral benzodiazepine receptor and Bak on the outer mitochondrial membrane. Here, we extend the study to investigate the interference of M11L with Bax activation during the process of apoptosis. Myxoma virus infection triggers an early apoptotic signal that induces rapid Bax translocation from cytoplasm to mitochondria, despite the existence of various viral antiapoptotic proteins. However, in the presence of M11L, the structural activation of Bax at the mitochondrial membrane, which is characterized by the occurrence of a Bax conformational change, is blocked in both M11L-expressing myxoma-infected cells and M11L-transfected cells under apoptotic stimulation. In addition, inducible binding of M11L to the mitochondrially localized Bax is detected in myxoma virus-infected cells and in M11L/Bax-cotransfected cells as measured by immunoprecipitation and tandem affinity purification analysis, respectively. Importantly, this inducible Bax/M11L interaction is independent of Bak, demonstrated by the complete block of Bax-mediated apoptosis in myxoma-infected cells that lack Bak expression. Our findings reveal that myxoma M11L modulates apoptosis by multiple independent strategies which all contribute to the blockade of apoptosis at the mitochondrial checkpoint.  相似文献   

19.
Renewed attention has been given lately to gangliosides and to their function as intracellular messengers of the adaptive responses to stress. Gangliosides are vital components of cell membranes; therefore, deleterious consequences can result from changes in their chemical composition and concentration, that is, membrane dynamics and structure can be altered as can the behavior of other membrane proteins. The importance of gangliosides in human health is evident in neurodegenerative diseases associated with defects in their degradation. As key modulators of intracellular calcium flux, gangliosides are involved in cellular processes downstream of calcium signaling. In this review, we focus on the effect of ganglioside accumulation on the endoplasmic reticulum calcium homeostasis and on the integrity of the mitochondrial membranes. We discuss how these events elicit an apoptotic program that ultimately leads to cell death. Owing to interorganelle crosstalk, these events are not necessarily self-contained, and gangliosides may serve as the common factor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号