首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the biochemical characterization of Rit and Rin, two members of the Ras superfamily identified by expression cloning. Recombinant Rit and Rin bind GTP and exhibit intrinsic GTPase activity. Conversion of Gln to Leu at position 79 (for Rit) or 78 (for Rin) (equivalent to position 61 in Ras) resulted in a complete loss of GTPase activity. Surprisingly, significant differences were found when the guanine nucleotide dissociation constants of Rit and Rin were compared with the majority of Ras-related GTPases. Both proteins display higher k(off) values for GTP than GDP in the presence of 10 mM Mg(2+). These GTP dissociation rates are 5- to 10-fold faster than most Ras-like GTPases. Despite these unique biochemical properties, our data support the notion that both Rit and Rin function as nucleotide-dependent molecular switches. To begin to address whether these proteins act as regulators of distinct signaling pathways, we examined their interaction with a series of known Ras-binding proteins by yeast two-hybrid analysis. Although Rit, Rin, and Ras have highly related effector domain sequences, Rit and Rin were found to interact with the known Ras binding proteins RalGDS, Rlf, and AF-6/Canoe but not with the Raf kinases, RIN1, or the p110 subunit of phosphatidylinositol 3-kinase. These interactions were GTP and effector domain dependent and suggest that RalGDS, Rlf, and AF-6 are Rit and Rin effectors. Their biochemical properties and interaction with a subset of known Ras effector proteins suggest that Rit and Rin may play important roles in the regulation of signaling pathways and cellular processes distinct from those controlled by Ras.  相似文献   

2.
Regulators and effectors of the ARF GTPases   总被引:30,自引:0,他引:30  
The small G proteins of the ARF family are key regulators of membrane dynamics. Many functions of ARF proteins in cells are being revealed by studies of their regulators and effectors. Significant progress has been made over the past year, with the identification of a surprisingly large family of novel ARF GTPase-activating proteins. In addition, two new classes of effectors, the PIP kinases and a novel family of monomeric coat-like proteins have been discovered.  相似文献   

3.
Rit is a novel member of the Ras superfamily of small GTP-binding proteins that regulates signaling pathways controlling cellular fate determination. Constitutively activated mutants of Rit induce terminal differentiation of pheochromocytoma (PC6) cells resulting in a sympathetic neuron-like phenotype characterized by the development of highly-branched neurites. Rit signaling has been found to activate several downstream pathways including MEK/ERK, p38 MAPK, Ral-specific guanine nucleotide exchange factors (GEFs), and Rit associates with the Par6 cell polarity machinery. In this study, a series of Rit effector loop mutants was generated to test the importance of these cellular targets to Rit-mediated neuronal differentiation. We find that Rit-mediated neuritogenesis is dependent upon MEK/ERK MAP kinase signaling but independent of RalGEF activation. In addition, in vivo binding studies identified a novel mechanism of Par6 interaction, suggesting that the cell polarity machinery may serve to spatially restrict Rit signaling.  相似文献   

4.
The Rho family of small GTPases act as intracellular molecular switches that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. Recent evidence implicates Rho GTPases in the regulation of neuronal morphogenesis, including migration, polarity, axon growth and guidance, dendrite elaboration and plasticity, and synapse formation. Signalling pathways from membrane receptors to Rho GTPases and from Rho GTPases to the actin cytoskeleton are beginning to be discovered. Mutations in these signalling pathways have been reported in human neurological diseases, which underscores their importance in the development and function of the nervous system.  相似文献   

5.
The functions of cellular prion protein (PrPC) are under intense debate and PrPC loss of function has been implicated in the pathology of prion diseases. Neuronal PrPC engagement with stress-inducible protein-1 and laminin (LN) plays a key role in cell survival and differentiation. The present study evaluated whether PrPC expression in astrocytes modulates neuron-glia cross-talk that underlies neuronal survival and differentiation. Astrocytes from wild-type mice promoted a higher level neuritogenesis than astrocytes obtained from PrPC-null animals. Remarkably, neuritogenesis was greatly diminished in co-cultures combining PrPC-null astrocytes and neurons. LN secreted and deposited at the extracellular matrix by wild-type astrocytes presented a fibrillary pattern and was permissive for neuritogenesis. Conversely, LN coming from PrPC-null astrocytes displayed a punctate distribution, and did not support neuronal differentiation. Additionally, secreted soluble factors from PrPC-null astrocytes promoted lower levels of neuronal survival than those secreted by wild-type astrocytes. PrPC and stress-inducible protein-1 were characterized as soluble molecules secreted by astrocytes which participate in neuronal survival. Taken together, these data indicate that PrPC expression in astrocytes is critical for sustaining cell-to-cell interactions, the organization of the extracellular matrix, and the secretion of soluble factors, all of which are essential events for neuronal differentiation and survival.  相似文献   

6.
7.
8.
Cadherins are cell-cell adhesion receptors that are essential for the establishment of the epithelial cell shape and maintenance of the differentiated epithelial phenotype. In order to show efficient adhesion, cadherin receptors require an association with actin filaments and the activity of RHO proteins. The RHO family of small GTPases is primarily involved in the reorganization of the cytoskeleton. In different cell types, each member of the family can induce specific types of organization of actin filaments: stress fibers (Rho), lamellae/ruffles (Rac), or filopodia (Cdc42). This review focuses on how the function of small GTPases may impinge on the regulation of cadherin-dependent adhesion. In particular, it discusses the impact that the above cytoskeletal structures induced by RHO proteins have on the development of epithelial morphology. Finally, the participation of small GTPase-interacting proteins is considered during the remodeling of cell shape that follows cell-cell contact formation.  相似文献   

9.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

10.
11.
The reggies/flotillins were discovered as proteins upregulated during axon regeneration. Here, we show that expression of a trans-negative reggie-1/flotillin-2 deletion mutant, R1EA, which interferes with oligomerization of the reggies/flotillins, inhibited insulin-like growth factor (IGF)-induced neurite outgrowth in N2a neuroblastoma cells and impaired in vitro differentiation of primary rat hippocampal neurons. Cells expressing R1EA formed only short and broad membrane protrusions often with abnormally large growth cones. R1EA expression strongly perturbed the balanced activation of the Rho-family GTPases Rac1 and cdc42. Furthermore, focal adhesion kinase (FAK) activity was also enhanced by R1EA expression, while other signaling pathways like ERK1/2, PKC or PKB signaling were unaffected. These severe signaling defects were caused by an impaired recruitment of the reggie/flotillin-associated adaptor molecule CAP/ponsin to focal contacts at the plasma membrane. Thus, the reggies/flotillins are crucial for coordinated assembly of signaling complexes regulating cytoskeletal remodeling.  相似文献   

12.
The Rit, Rin, and Ric proteins comprise a distinct and evolutionarily conserved subfamily of the Ras-like small G-proteins. Although these proteins share the majority of core effector domain residues with Ras, recent studies suggest that Rit uses novel effector pathways to regulate NIH3T3 cell proliferation and transformation, while the functions of Rin and Ric remain largely unknown. Since we demonstrate that Rit is expressed in neurons, we investigated the role of Rit signaling in promoting the differentiation and survival of pheochromocytoma cells. In this study, we show that expression of constitutively active Rit (RitL79) in PC6 cells results in neuronal differentiation, characterized by the elaboration of an extensive network of neurite-like processes that are morphologically distinct from those mediated by the expression of oncogenic Ras. Although activated Rit fails to stimulate mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) signaling pathways in COS cells, RitL79 induced the phosphorylation of ERK1/2 in PC6 cells. We also find that Rit-mediated effects on neurite outgrowth can be blocked by co-expression of dominant-negative mutants of C-Raf1 or mitogen-activated protein kinase kinase 1 (MEK1). Moreover, expression of dominant-negative Rit is sufficient to inhibit NGF-induced neurite outgrowth. Expression of active Rit inhibits growth factor-withdrawal mediated apoptosis of PC6 cells, but does not induce phosphorylation of Akt/protein kinase B, suggesting that survival does not utilize the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Instead, pharmacological inhibitors of MEK block Rit-stimulated cell survival. Taken together, these studies suggest that Rit represents a distinct regulatory protein, capable of mediating differentiation and cell survival in PC6 cells using a MEK-dependent signaling pathway to achieve its effects.  相似文献   

13.
14.
Rho GTPases and their regulators in neuronal functions and development   总被引:2,自引:0,他引:2  
Koh CG 《Neuro-Signals》2006,15(5):228-237
Neurons are specialized cell types which send out processes in order to communicate with other cells, which can be immediate neighbors or whose cell bodies are far distant. Neuronal morphology as in all cells is determined in large part through the regulation of the cytoskeleton. One of the key regulators of the actin cytoskeleton is the Rho family of GTPases. The Rho GTPases function as molecular switches to turn on or off downstream biochemical pathways depending on the stimuli. Their activities and their regulation are controlled by many other proteins such as the guanine nucleotide exchange factors and the GTPase-activating proteins. The activities of some of the Rho family members are reported to be antagonistic to one another. In general, Rac and Cdc42 promote neurite outgrowth while RhoA stimulates retraction. The balance of these opposing activities of the different Rho GTPases is crucial for the morphology and function of the neurons.  相似文献   

15.
The Rab/Ypt/Sec4 family forms the largest branch of the Ras superfamily of GTPases, acting as essential regulators of vesicular transport pathways. We used the large amount of information in the databases to analyse the mammalian Rab family. We defined Rab-conserved sequences that we designate Rab family (RabF) motifs using the conserved PM and G motifs as "landmarks". The Rab-specific regions were used to identify new Rab proteins in the databases and suggest rules for nomenclature. Surprisingly, we find that RabF regions cluster in and around switch I and switch II regions, i.e. the regions that change conformation upon GDP or GTP binding. This finding suggests that specificity of Rab-effector interaction cannot be conferred solely through the switch regions as is usually inferred. Instead, we propose a model whereby an effector binds to RabF (switch) regions to discriminate between nucleotide-bound states and simultaneously to other regions that confer specificity to the interaction, possibly Rab subfamily (RabSF) specific regions that we also define here. We discuss structural and functional data that support this model and its general applicability to the Ras superfamily of proteins.  相似文献   

16.
The non-motile primary cilium is a single, microtubule-based hair-like projection that emanates from most, if not all, non-dividing mammalian cells. Enriched in a variety of signalling receptors and accessories, the cilium mediates crucial sensory and regulatory functions during development and postnatal tissue homoeostasis. Maintenance of ciliary morphology and function requires continuous IFT (intraflagellar transport), and recent findings have shed light on some molecular details of how ciliogenesis is dependent on targeted exocytic membrane trafficking from the Golgi. The ARL [Arf (ADP ribosylation factor)-related] small GTPase Arf4 functions in TGN (trans-Golgi network) sorting of cilia-targeted rhodopsin into carrier vesicles, while Arl6 (Arf-like 6) and Arl13b regulate aspects of ciliary transport and IFT. Ciliogenesis and ciliary functions are also regulated by small Rabs. Rab8a, in conjunction with Rab11a, and via its interaction with a multitude of proteins associated with the ciliary basal body and axoneme/membrane, appears to be critical for ciliogenesis. Rab8's close homologue Rab10 may also play a ciliogenic role in some cells. Rab23, the depletion or inactivation of which affects cilia formation, may regulate specific ciliary protein targeting and turnover, particularly those involved in Shh (Sonic hedgehog) signalling. Recent findings have also implicated Ran, a small GTPase better known for nuclear import, in ciliary targeting of the KIF17 motor protein. We highlight and discuss recent findings on how Rabs and other small GTPases mediate ciliogenesis and ciliary traffic.  相似文献   

17.
The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer′s disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction.  相似文献   

18.
Although several observations over the years suggested a link between the Ras superfamily of GTPases and second messengers generated by the isoforms of phospholipase C, such links had not been substantiated at the molecular level until recently. In particular, identification of a novel phospholipase C isoform, PLC epsilon, which also incorporates domains for guanine nucleotide exchange and Ras binding, have prompted an interest in the interplay between small GTPases and phospholipase C and possible significance of these interconnectivities. Research that followed suggests that activation of each of the major classes of phospholipase C by small GTPases could have a different mechanism and different function, and also that phospholipase C enzymes in turn control Ras GTPases through regulatory proteins that respond directly to second messengers.  相似文献   

19.
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.  相似文献   

20.
Nitric oxide (NO), an important cellular messenger, has been linked to both neurodegenerative and neuroprotective actions. In the present review, we focus on recent data establishing a survival and differentiation role for NO in several neural in vitro and in vivo models. Nitric oxide has been found to be essential for survival of neuronal cell lines and primary neurons in culture under various death challenges. Furthermore, its lack may aggravate some neuropathological conditions in experimental animals. Several cellular pathways and signaling systems subserving this neuroprotective role of NO are considered in the review. Survey of recent data related to the developmental role of NO mainly focus on its action as a negative regulator of neuronal precursor cells proliferation and on its role of promotion of neuronal differentiation. Discussion on discrepancies arising from the literature is focused on the Janus-faced properties of the molecule and it is proposed that most controversial results are related to the intrinsic property of NO to compensate among functionally opposed effects. As an example, the increased proliferation of neural cell precursors under conditions of NO shortage may be, later on in the development, compensated by increased elimination through programmed cell death as a consequence of the lack of the survival-promoting action of the molecule. To elucidate these complex, and possibly contrasting, effects of NO is indicated as an important task for future researches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号