首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A series of twenty-two (?)-menthylamine derivatives was synthesized and tested on TRPM8, TRPV1, and TRPA1 channels. Five of the novel compounds, that is, 1d, 1f, 2b, 2c, and 2e behaved as potent TRPM8 antagonists with IC50 values versus icilin and (?)-menthol between 20 nM and 0.7 μM, and were between 4- and ~150-fold selective versus TRPV1 and TRPA1 activation. Compound 1d also induced caspase 3/7 release in TRPM8-expressing LNCaP prostate carcinoma cells, but not in non-TRPM8 expressing DU-145 cells. Five other derivatives, that is, 1a, 1g, 1h, 2f, and 2h were slightly less potent than previous compounds but still relatively selective versus TRPV1 and TRPA1.  相似文献   

2.
Endothelial dysfunction is decisive and leads to the development of several inflammatory diseases. Endotoxemia-derived sepsis syndrome exhibits a broad inflammation-induced endothelial dysfunction. We reported previously that the endotoxin, lipopolysaccharide (LPS), induces the conversion of endothelial cells (ECs) into activated fibroblasts, showing a myofibroblast-like protein expression profile. Enhanced migration is a hallmark of myofibroblast function. However, the mechanism involved in LPS-induced EC migration is no totally understood. Some studies have shown that the transient receptor potential melastatin 7 (TRPM7) ion channel is involved in fibroblast and tumor cell migration through the regulation of calcium influx. Furthermore, LPS modulates TRPM7 expression. However, whether TRPM7 is involved in LPS-induced EC migration remains unknown.Here, we study the participation of LPS as an inducer of EC migration and study the mechanism underlying evaluating the participation of the TRPM7 ion channel.Our results demonstrate that LPS induced EC migration in a dose-dependent manner. Furthermore, this migratory process was mediated by the TLR-4/NF-κB pathway and the generation of ROS through the PKC-activated NAD(P)H oxidase. In addition, LPS increased the intracellular calcium level and the number of focal adhesion kinase (FAK)-positive focal adhesions in EC. Finally, we demonstrate that using TRPM7 blockers or suppressing TRPM7 expression through siRNA successfully inhibits the calcium influx and the LPS-induced EC migration.These results point out TRPM7 as a new target in the drug design for several inflammatory diseases that impair vascular endothelium function.  相似文献   

3.
4.
The neurotoxicity of amyloid-β (Aβ) involves caspase-dependent and -independent programmed cell death. The latter is mediated by the nuclear translocation of the mitochondrial flavoprotein apoptosis inducing factor (AIF). Nicotine has been shown to decrease Aβ neurotoxicity via inhibition of caspase-dependent apoptosis, but it is unknown if its neuroprotection is mediated through caspase-independent pathways. In the present study, pre-treatment with nicotine in rat cortical neuronal culture markedly reduced Aβ(1-42) induced neuronal death. This effect was accompanied by a significant reduction of mitochondrial AIF release and its subsequent nuclear translocation as well as significant inhibition of cytochrome c release and caspase 3 activation. Pre-treatment with selective α7nicotinic acetylcholine receptor(nAChR) antagonist (methyllycaconitine), but not the α4 nAChR antagonist (dihydro-β-erythroidine), could prevent the neuroprotective effect of nicotine on AIF release/translocation, suggesting that nicotine inhibits the caspase-independent death pathway in a α7 nAChR-dependent fashion. Furthermore, the neuroprotective action of nicotine on AIF release/translocation was suppressed by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Pre-treatment with nicotine significantly restored Akt phosphorylation, an effector of PI3K, in Aβ(1-42) -treated neurons. These findings indicate that the α7 nAChR activation and PI3K/Akt transduction signaling contribute to the neuroprotective effects of nicotine against Aβ-induced cell death by modulating caspase-independent death pathways.  相似文献   

5.
A series of twenty-five derivatives of tetrahydro-β-carbolines 13 was synthesized and assayed on FAAH and TRPV1 and TRPA1 channels. Four carbamates, that is, 5a,c,e, and 9b inhibited FAAH with significant potency and interacted also effectively with TRPV1 and TRPA1 nociceptive receptors, while ureas 7b,d,f, and 8a,b were endowed with specific submicromolar TRPV1 modulating activities.  相似文献   

6.
7.
In recent years, it has become clear that the neuronal nicotinic acetylcholine receptor (nAChR) is a valid target in the treatment of a variety of diseases, including Alzheimer’s disease, anxiety, and nicotine addiction. As with most membrane proteins, information on the three-dimensional (3D) structure of nAChR is limited to data from electron microscopy, at a resolution that makes the application of structure-based design approaches to develop specific ligands difficult. Based on a high-resolution crystal structure of AChBP, homology models of the extracellular domain of the neuronal rat and human nAChR subtypes α4β2 and α7 (the subtypes most abundant in brain) were built, and their stability assessed with molecular dynamics (MD). All models built showed conformational stability over time, confirming the quality of the starting 3D model. Lipophilicity and electrostatic potential studies performed on the rat and human α4β2 and α7 nicotinic models were compared to AChBP, revealing the importance of the hydrophobic aromatic pocket and the critical role of the α-subunit Trp—the homolog of AChBP-Trp 143—for ligand binding. The models presented provide a valuable framework for the structure-based design of specific α4β2 nAChR subtype ligands aimed at improving therapeutic and diagnostic applications. Figure Electrostatic surface potential of the binding site cavity of the neuronal nicotinic acetylcholine receptor (nAChR). Nicotinic models performed with the MOLCAD program: a rat α7, b rat α4β2, c human α7, d human α4β2. All residues labeled are part of the α7 (a,c) or α4 (b,d) subunit with the exception of Phe 117, which belongs to subunit β2 (d). Violet Very negative, blue negative, yellow neutral, red very positive  相似文献   

8.
PI3Kδ is a lipid kinase of the PI3K class IA family involved in early signaling events of leukocytes responding to a wide variety of stimuli. The leukocyte specificity of PI3Kδ is defined by its expression, whereas its signaling function is via the production of phosphoinositide 3,4,5-triphosphates at the proximity of activated receptors for recruiting other signaling molecules. The importance of PI3Kδ in B cell development and function is most apparent, and its role in other leukocyte cell types can be easily demonstrated as well. PI3Kδ participates in the development, activation and migration of T cells and NK cells. The role of PI3Kδ in myeloid cell activities, such as inflammation driven cell infiltration, neutrophil oxidative burst, immune complex mediated macrophage activation, as well as mast cell maturation and degranulation, has been well illustrated in various studies. As a result of the broad effects of PI3Kδ in leukocyte functions, the disruption of PI3Kδ expression or activity leads to decreased inflammatory and immune responses in vivo. The protective role of PI3Kδ inactivation in animal models of arthritis, asthma or obstructive respiratory diseases has been demonstrated. These findings suggest the potential efficacy achievable with PI3Kδ inhibitors in the treatment of autoimmune and respiratory diseases.  相似文献   

9.
α7 nicotinic acetylcholine receptors (α7nAChRs) have been targeted to improve cognition in different neurological and psychiatric disorders. Nevertheless, no α7nAChR activating ligand has been clinically approved. Here, we investigated the effects of antagonizing α7nAChRs using the selective antagonist methyllycaconitine (MLA) on receptor activity in vitro and cognitive functioning in vivo. Picomolar concentrations of MLA significantly potentiated receptor responses in electrophysiological experiments mimicking the in vivo situation. Furthermore, microdialysis studies showed that MLA administration substantially increased hippocampal glutamate efflux which is related to memory processes. Accordingly, pre-tetanus administration of low MLA concentrations produced longer lasting potentiation (long-term potentiation, LTP) in studies examining hippocampal plasticity. Moreover, low doses of MLA improved acquisition, but not consolidation memory processes in rats. While the focus to enhance cognition by modulating α7nAChRs lies on agonists and positive modulators, antagonists at low doses should provide a novel approach to improve cognition in neurological and psychiatric disorders.  相似文献   

10.
The production of reactive oxygen species and inflammatory events are the underlying mechanisms of ischemia-reperfusion injury (IRI). It was determined that transient receptor potential melastatin-2 (TRPM2) channels and phospholipase A2 (PLA 2) enzymes were associated with inflammation and cell death. In this study, we investigated the effect of N-( p-amylcinnamoyl) anthranilic acid (ACA), a TRPM2 channel blocker, and PLA 2 enzyme inhibitor on renal IRI. A total of 36 male Sprague-Dawley rats were divided into four groups: control, ischemia-reperfusion (I/R), I/R + ACA 5 mg, I/R + ACA 25 mg. In I/R applied groups, the ischemia for 45 minutes and reperfusion for 24 hours were applied bilaterally to the kidneys. In the I/R group, serum levels of the blood urea nitrogen (BUN), creatinine, cystatin C (CysC), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin-18 increased. On histopathological examination of renal tissue in the I/R group, the formation of glomerular and tubular damage was seen, and it was detected that there was an increase in the levels of malondialdehyde (MDA), caspase-3, total oxidant status (TOS), and oxidative stress index (OSI); and there was a decrease in total antioxidant capacity (TAC) and catalase enzyme activity. ACA administration reduced serum levels of BUN, creatinine, CysC, KIM-1, NGAL, interleukin-18. In the renal tissue, ACA administration reduced histopathological damage, levels of caspase-3, MDA, TOS, and OSI; and it increased the level of TAC and catalase enzyme activity. It has been shown with the histological and biochemical results in this study that ACA is protective against renal IRI.  相似文献   

11.
To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca(2+) influx, and the acrosome reaction.  相似文献   

12.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca(2+)-permeable channels and mediate numerous cellular functions. It is commonly assumed that TRPC channels are activated by stimulation of Gα(q)-PLC-coupled receptors. However, whether the Gα(q)-PLC pathway is the main regulator of TRPC4/5 channels and how other Gα proteins may regulate these channels are poorly understood. We previously reported that TRPC4/TRPC5 can be activated by Gα(i). In the current work, we found that Gα(i) subunits, rather than Gα(q), are the primary and direct activators of TRPC4 and TRPC5. We report a novel molecular mechanism in which TRPC4 is activated by several Gα(i) subunits, most prominently by Gα(i2), and TRPC5 is activated primarily by Gα(i3). Activation of Gα(i) by the muscarinic M2 receptors or expression of the constitutively active Gα(i) mutants equally and fully activates the channels. Moreover, both TRPC4 and TRPC5 are activated by direct interaction of their conserved C-terminal SESTD (SEC14-like and spectrin-type domains) with the Gα(i) subunits. Two amino acids (lysine 715 and arginine 716) of the TRPC4 C terminus were identified by structural modeling as mediating the interaction with Gα(i2). These findings indicate an essential role of Gα(i) proteins as novel activators for TRPC4/5 and reveal the molecular mechanism by which G-proteins activate the channels.  相似文献   

13.
G-protein coupled receptors (GPCRs) are generally considered to function as cell surface signaling structures that respond to extracellular mediators, many of which do not readily access the cell's interior. Indeed, most GPCRs are preferentially targeted to the plasma membrane. However, some receptors, including α(2C)-Adrenoceptors, challenge conventional concepts of GPCR activity by being preferentially retained and localized within intracellular organelles. This review will address the issues associated with this unusual GPCR localization and discuss whether it represents a novel sub-cellular niche for GPCR signaling, whether these receptors are being stored for rapid deployment to the cell surface, or whether they represent immature or incomplete receptor systems.  相似文献   

14.
Estrogen, through its receptors, regulates various aspects of spermatogenesis and male fertility. To understand the roles of estrogen receptors (ERα and ERβ) in male fertility, we have developed in vivo selective ER agonist administration models. Treatment of adult male rats with ERα or ERβ agonist for 60 d decreases fertility and litter size mainly due to increased pre- and post-implantation embryo loss. Since epigenetic mechanisms like DNA methylation play a crucial role in male fertility, we investigated the effects of the ER agonists on DNA methylation in spermatozoa. Treatment with ERβ agonist causes a significant decrease in DNA methylation both at the global level and at the H19 differentially methylated region (DMR). This could be due to decrease in DNA methyltransferases in the testis upon ERβ agonist treatment. The hypomethylation observed at the H19 DMR corroborates with aberrant expression of Igf2 and H19 imprinted genes in the resorbed embryos sired by ERβ agonist-treated males. Thus, our study demonstrates that ERβ regulates DNA methylation and methylating enzymes during adult rat spermatogenesis. Activation of estrogen signaling through ERβ could therefore cause DNA methylation defects leading to impaired male fertility. These results define a role for estrogen in epigenetic regulation of male germ line, suggesting that epigenetic insults by exposure to environmental estrogens could potentially affect male fertility.  相似文献   

15.
Lysophosphatidic acid (LPA) induces α1B-adrenoceptor phosphorylation through pertussis toxin-sensitive G proteins, phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC). Here we showed that transfection of the carboxyl terminus of the β-adrenergic receptor kinase (βARK) or the Δp85 mutant of PI3K markedly decreased the α1B-adrenoceptor phosphorylation induced by LPA without decreasing the receptor phosphorylations induced by active phorbol esters or noradrenaline. In addition, it was observed that inhibitors of epidermal growth factor (EGF) receptor kinase and of metalloproteinases and an anti-heparin binding-EGF antibody also diminish LPA-induced phosphorylation; such partial inhibitions were not additive, indicating that they occur through a common process.Our data indicate that stimulation of LPA receptors activates pertussis-toxin-sensitive G proteins. Dissociated Gβγ subunits initiate two processes: one of them involving activation of metalloproteinases, heparin binding-EGF shedding and transactivation of EGF receptors and another independent of these events. Both processes triggered PI3K activity, which lead to activation of PKC and this to α1B-adrenoceptor phosphorylation. This is the first demonstration of a role of EGF receptor transactivation in the phosphorylation of a G protein-coupled receptor.  相似文献   

16.
Sympathetic nervous system regulation by the α(1)-adrenergic receptor (AR) subtypes (α(1A), α(1B), α(1D)) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α(1)-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.  相似文献   

17.
Transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in the central nervous system and its role in development of Alzheimer’s disease (AD) is largely unknown. To identify AD-related changes in the TRPV4 channel distribution in the central nervous system, we investigated the distribution and level changes of TRPV4 in brains of AD model mice. The expressions of TRPV4 in the brain of control mice, early stage and late stage AD model mice were compared using immunohistochemistry with antibodies recognizing TRPV4 on free floating sections and in addition we performed western blotting to supplement our findings. TRPV4 immunoreactivity was significantly increased in the cerebral cortex, hippocampal formation, striatum and thalamus of AD model mice compared with control mice. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of early stage and late stage AD model mice. In addition, TRPV4 immunoreactivity was increased in the hippocampal formation, striatum and thalamus of late stage AD model mice. This is the first demonstration of AD-related increases in TRPV4 expression in the brain and it may provide useful data for investigating the pathogenesis of AD-related neurodegenerative diseases. The regulation of TRPV4 in AD mouse model and its functional significance require further investigation.  相似文献   

18.
19.
Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ~22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号