首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatitis B virus x (HBx) protein has been implicated in HBV-related hepatocellular carcinoma (HCC) pathogenesis. However, whether HBx regulates miRNA expression that plays important roles in gene regulation during hepatocarcinogenesis remains unknown. The expression of microRNA-101 (miR-101) in HBV-related HCC tissues and HCC cells was evaluated by real-time PCR. The direct target of miR-101, DNA methyltransferase 3A (DNMT3A), was identified in silico and validated using a 3′-UTR reporter assay. miR-101 was functionally characterized in cells with transiently altered miR-101 expression. HBx expression was found to have a significant inverse correlation with miR-101 expression in HBx-expressing HepG2 compared to control HepG2 cells. miR-101 expression was frequently down-regulated in HBV-related HCC tissues compared to adjacent noncancerous hepatic tissues and had a significant inverse correlation with DNMT3A expression in HBV-related HCCs. Further characterization of miR-101 revealed that it negatively regulated DNA methylation partly through targeting DNMT3A. HBx-mediated miR-101 down-regulation and DNMT3A up-regulation supported the enhanced DNA methylation of several tumor-suppressor genes in HBx-expressing cells. Our studies demonstrating the deregulation of miR-101 expression by HBx may provide novel mechanistic insights into HBV-mediated hepatocarcinogenesis and identify a potential miRNA-based targeted approach for treating HBV-related HCC.  相似文献   

2.
乙型肝炎病毒x (hepatitis B virus x,HBx)蛋白是导致肝癌(hepatocellular Carcinoma,HCC)的重要因素.但HBX在HCC形成过程中表观遗传机制尚有待阐明.本研究发现microRNA-200c (miR-200c)在过表达乙型肝炎病毒的HCC中下调,并且其直接靶向DNA甲基转移酶3A (DNA methyltransferase 3A,DNMT3A).此外,miR-200c和DNMT3A在HB诱发的肝癌组织中呈现负相关.乙型肝炎病毒诱导miR-200c下调,进而引起DNMT3A表达上调,导致细胞中肿瘤相关基因的启动子超甲基化.我们对乙型肝炎病毒诱导的肝癌表观遗传学改变进行了进一步研究,并提出一种基于miRNA的靶向治疗乙型肝炎病毒相关肝癌的潜在方法.  相似文献   

3.
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant diseases worldwide, and the majority of cases are related to hepatitis B virus (HBV) infection. Interactions between the HBV-encoded X (HBx) protein and host factors are known to play major roles in the onset and progression of HBV-related HCC. These dynamic molecular mechanisms are extremely complex and lead to prominent changes in the host genetic and epigenetic architecture. This review summarizes the current knowledge about HBx-induced epigenetic changes, including aberrations in DNA methylation, histone modifications, and microRNA expression, and their roles in HBV-infected liver cells and HBV-related HCC. Moreover, the HBx-mediated epigenetic control of HBV covalently closed circular DNA (cccDNA) is also discussed. Although this field of study is relatively new, the accumulated evidence has indicated that the epigenetic events induced by HBx play important roles in the development of HBV-related HCC. Ongoing research will help to identify practical applications of the HBV-related epigenetic signatures as biomarkers for early HCC detection or as potential targets to prevent and treat HBV-related HCC.  相似文献   

4.
Hepatitis B virus (HBV) infection is the most common cause of hepatocellular carcinoma (HCC) worldwide, wherein the expression of alpha-fetoprotein (AFP) is reactivated to promote tumorgenesis. Hepatitis B virus X protein (HBx) protein encoded by the HBV virus X gene has been considered to be oncogenic and implicated in hepatocarcinogenesis. However, the relationship between HBx and abnormal AFP expression in HCC is yet to be fully understood. To explore the potential regulation of HBx on AFP re-expression in HCC, 97 HCC samples of different etiologies were analyzed, and extremely higher serum AFP levels were found in patients with HBsAg+. Analyses of HBV-related HCC specimens showed that the expression of AFP was negatively correlated with the levels of miR-1236 and miR-329. Further analyses indicated that HBx promotes the expression of AFP by orchestrating the levels of miR-1236 and miR-329 both in vitro and in vivo. Specifically, miR-1236 and miR-329 bind to the potential target sequences in AFP mRNA 3′-untranslated region to suppress its expression. HBx transfection resulted in the significant decrement of these microRNAs and increment of AFP expression. Moreover, AFP promotes the proliferation of hepatoma cells and attenuates the proapoptotic effect of chemotherapy agents. These findings revealed a novel regulatory mechanism of HBx on the abnormal AFP expression in HCC, which may provide a therapeutic approach for combating HBV-related HCC by targeting the regulation of AFP expression.  相似文献   

5.
6.
Wang Q  Zhang T  Ye L  Wang W  Zhang X 《Cancer epidemiology》2012,36(4):369-374
Hepatitis B virus (HBV) X (HBx) gene multi-site mutations are a frequent event in the clinical hepatocellular carcinoma (HCC) tissues. It has been reported that the mutation of the HBx plays a crucial role in the development of HBV-related HCC. To identify the novel mutations of HBx in the HCC tissues, we examined and analyzed the sequences of HBx gene in 60 cases of HCC tumor tissues and paratumor tissues from China by polymerase chain reaction (PCR). The mutation patterns of HBx were analyzed by comparing the tumor tissues with non-tumor tissues. The data showed that 44 cases of tissues out of 60 patients were HBV-positive. Our results showed that the mutations at amino acid 30, 88, 144 from tumor samples and at amino acid 31, 43, 87, 94 from non-tumor samples were highly frequent events. Interestingly, we found that a novel type of HBx linked-mutations, such as at aa L30F/S144A, was 29.5% (13/44) positive in the tumor tissues. However, the role of HBx gene mutations at aa L30F/S144A relative to wild type HBx gene is unclear in hepatocarcinogenesis. The novel HBx linked-mutations may be significant in the development of HCC.  相似文献   

7.
8.
Hepatocellular carcinoma (HCC) is the main threat for the patients infected with hepatitis B virus (HBV), but the oncogenic mechanism of HBV-related HCC is still controversial. Previously, we have found that several HBV surface gene (HBS) non-sense mutations are oncogenic. Among these mutations, sW182* was found to have the most potent oncogenicity. In this study, we found that Carbonic Anhydrase X (CA10) level was specifically increased in sW182* mutant-expressing cells. CA10 overexpression was also associated with HBS nonsense mutation in HBV-related HCC tumor tissues. Transformation and tumorigenesis assays revealed that CA10 had significant oncogenic activity. In addition, CA10 overexpression resulted in dysregulation of apoptosis-related proteins, including Mcl-1, Bcl-2, Bcl-xL and Bad. While searching for the regulatory mechanism of CA10, miR-27b was found to downregulate CA10 expression by regulating its mRNA degradation and its expression was decreased in sW182* mutant cells. Moreover, CA10 overexpression was associated with down-regulation of miR-27b in human HBV-related HCC tumor tissues with sW182* mutation. Therefore, induction of the expression of CA10 through repression of miR-27b by sW182* might be one mechanism involved in HBS mutation-related hepatocarcinogenesis.  相似文献   

9.
The long noncoding RNA growth-arrest specific 5 (GAS5) is a suppressor of many cancers. However, the role and mechanism of action of GAS5 in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. Here, the expression of hepatitis B virus x gene (HBx) mRNA and GAS5 was assessed by qRT–PCR, and western blot analysis was performed to determine the protein expression levels. In addition, the cell viability and invasion of cells were confirmed using  MTT assay and Transwell assay, respectively. The DNA methylation level of GAS5 was measured by methylation-specific PCR. Moreover, RIP assay and RNA pull down assay were carried out to examine the combination of Y-box-binding protein 1 (YBX1) and GAS5. First, our data proved that HBx is increased, while GAS5 is decreased in HCC cell lines. Subsequently, we found that HBx facilitates HCC cell viability and invasion by inhibiting GAS5 expression. Then, we further clarified that HBx induces the DNA methylation of GAS5 by promoting methyltransferase expression, thereby suppressing GAS5 expression. Furthermore, GAS5 binds YBX1 and promotes YBX1 and p21 expression. Finally, the functional analysis revealed that the upregulation of GAS5 could attenuate cell viability and invasion by boosting p21 expression via binding YBX1. Overall, our results demonstrated that HBx promotes HCC progression by inducing GAS5 methylation to reduce its expression. The upregulation of GAS5 suppressed HBV-related HCC by activating YBX1/p21 signaling. Our data provide novel evidence supporting the potential of GAS5 as a treatment target in HBV-related HCC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00645-z.  相似文献   

10.
Hepatitis B virus X protein (HBx) plays crucial roles in the development of hepatocellular carcinoma (HCC). The abnormal lipid metabolism is involved in the hepatocarcinogenesis. We previously reported that HBx suppressed miR-205 in hepatoma cells. In this study, we supposed that HBx-decreased miR-205 might contribute to the abnormal lipid metabolism according to the bioinformatics analysis. Interestingly, we showed that the expression levels of acyl-CoA synthetase long-chain family member 4 (ACSL4) were negatively associated with those of miR-205 in clinical HCC tissues. Then, we validated that miR-205 was able to inhibit the expression of ACSL4 at the levels of mRNA and protein through targeting its 3′UTR. Strikingly, we found that HBx was able to increase the levels of cellular cholesterol, a metabolite of ACSL4, in hepatoma cells, which could be blocked by miR-205 (or Triacsin C, an inhibitor of ACSL4). However, anti-miR-205 could increase the levels of cholesterol in the cells. Moreover, we demonstrated that the levels of cholesterol were increased in the liver of HBx transgenic mice in a time course manner. Functionally, oil red O staining revealed that HBx promoted lipogenesis in HepG2 cells, which could be abolished by miR-205 (or Triacsin C). However, anti-miR-205 was able to accelerate lipogenesis in the cells. Interestingly, the treatment with Triacsin C could remarkably block the role of anti-miR-205 in the event. Thus, we conclude that miR-205 is able to target ACSL4 mRNA. The HBx-depressed miR-205 is responsible for the abnormal lipid metabolism through accumulating cholesterol in hepatoma cells.  相似文献   

11.
Kido T  Ou JH  Lau YF 《PloS one》2011,6(7):e22979
Hepatitis B virus (HBV) infection is a major risk for hepatocellular carcinoma (HCC), and it is a serious global health problem with two billion people exposed to it worldwide. HBx, an essential factor for viral replication and a putative oncoprotein encoded by the HBV genome, has been shown to promote oncogenic properties at multiple sites in HBV-infected liver cells. The expression level of HBx closely associates with the development and progression of HCC, therefore the mechanism(s) regulating the stability of HBx is important in oncogenesis of HBV-infected cells. We demonstrate that the X-linked tumor suppressor TSPX enhances the degradation of HBx through the ubiquitin-proteasome pathway. TSPX interacts with both HBx and a proteasome 19S lid subunit RPN3 via its C-terminal acidic tail. Most importantly, over-expression of RPN3 protects HBx from, and hence acts as a negative regulator for, proteasome-dependent degradation. TSPX abrogates the RPN3-depedent stabilization of HBx, suggesting that TSPX and RPN3 act competitively in regulation of HBx stability. Since mutation and/or epigenetic repression of X-located tumor suppressor gene(s) could significantly predispose males to human cancers, our data suggest that TSPX-induced HBx degradation could play key role(s) in hepatocarcinogenesis among HBV-infected HCC patients.  相似文献   

12.
Kong G  Zhang J  Zhang S  Shan C  Ye L  Zhang X 《PloS one》2011,6(5):e19518
Hepatitis B virus X protein (HBx) plays important roles in the development of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) contribute to cancer development by acting as oncogenes or tumor suppressors. Previously, we reported that HBx was able to promote the migration of hepatoma HepG2 cells. However, the regulation of miRNAs in the development of HBV-related HCC is poorly understood. In the present study, we reported that miR-29a was a novel regulator of migration of hepatoma cells mediated by HBx. Our data showed that the expression of miR-29a was dramatically increased in p21-HBx transgenic mice, HBx-transfected hepatoma HepG2-X (or H7402-X) cells and HepG2.2.15 cells that constitutively replicate HBV. However, our data showed that miR-29a was upregulated in 4 of the 11 clinical HCC samples. We found that the overexpression of miR-29a promoted the migration of HepG2 cells, while a specific miR-29a inhibitor could partially abolish the enhanced migration of HepG2-X cells. Moreover, we identified PTEN was one of the target genes of miR-29a in HepG2 cells. The deletion of the miR-29a-binding site was able to abolish the role of miR-29a in suppression of luciferase activity of the PTEN 3'UTR reporter. Meanwhile, the overexpression of PTEN was able to reverse the promoted migration of HepG2 cells mediated by miR-29a. Moreover, our data showed that the modulation of Akt phosphorylation, a downstream factor of PTEN, was involved in the cell migration enhanced by miR-29a, suggesting that miR-29a is responsible for the cell migration through its target gene PTEN. Thus, we conclude that miR-29a is involved in the regulation of migration of hepatoma cells mediated by HBx through PTEN in cell culture model.  相似文献   

13.
Long noncoding RNAs (lncRNAs) play crucial roles in human cancers. It has been reported that lncRNA highly up-regulated in liver cancer (HULC) is dramatically up-regulated in hepatocellular carcinoma (HCC). Hepatitis B virus X protein (HBx) contributes importantly to the development of HCC. However, the function of HULC in HCC mediated by HBx remains unclear. Here, we report that HULC is involved in HBx-mediated hepatocarcinogenesis. We found that the expression levels of HULC were positively correlated with those of HBx in clinical HCC tissues. Moreover, we revealed that HBx up-regulated HULC in human immortalized normal liver L-O2 cells and hepatoma HepG2 cells. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay showed that HBx activated the HULC promoter via cAMP-responsive element-binding protein. We further demonstrated that HULC promoted cell proliferation by methyl thiazolyl tetrazolium, 5-ethynyl-2'-deoxyuridine, colony formation assay, and tumorigenicity assay. Next, we hypothesized that HULC might function through regulating a tumor suppressor gene p18 located near HULC in the same chromosome. We found that the mRNA levels of p18 were inversely correlated with those of HULC in the above clinical HCC specimens. Then, we validated that HULC down-regulated p18, which was involved in the HULC-enhanced cell proliferation in vitro and in vivo. Furthermore, we observed that knockdown of HULC could abolish the HBx-enhanced cell proliferation through up-regulating p18. Thus, we conclude that the up-regulated HULC by HBx promotes proliferation of hepatoma cells through suppressing p18. This finding provides new insight into the roles of lncRNAs in HBx-related hepatocarcinogenesis.  相似文献   

14.
15.
16.
17.
Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.  相似文献   

18.
19.
20.
Jagged1 is one of the ligands of Notch signaling pathway, which controls cellular proliferation and differentiation, and also plays important roles in various malignant tumors. However, the expression of Jagged1 in hepatocellular carcinoma (HCC) has not been elucidated, nor whether it is associated with hepatitis B virus X protein (HBx). In this study, we found that Jagged1 was highly expressed in 79.2% (42/53) of HCC tissues compared with adjacent nontumor liver (P <0.05), and its expression was found to be closely related with HBx (rs=0.522, P <0.001) in HCC tissues. Our in vitro study also showed that alteration of HBx expression in HCC cell lines led to a consistent change of Jagged1. Moreover, Jagged1 was found to co-localize and directly interact with HBx in HCC tissues and HBx expressed HCC cell lines. Our results reveal that Jagged1, which is regulated by HBx, may contribute to the development of HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号