首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenic origin of autoimmune diseases can be traced to both genetic susceptibility and epigenetic modifications arising from exposure to the environment. Epigenetic modifications influence gene expression and alter cellular functions without modifying the genomic sequence. CpG-DNA methylation, histone tail modifications and microRNAs (miRNAs) are the main epigenetic mechanisms of gene regulation. Understanding the molecular mechanisms that are involved in the pathophysiology of autoimmune diseases is essential for the introduction of effective, target-directed and tolerated therapies. In this review, we summarize recent findings that signify the importance of epigenetic modifications in autoimmune disorders while focusing on systemic lupus erythematosus. We also discuss future directions in basic research, autoimmune diagnostics and applied therapy.  相似文献   

2.
Substantial new knowledge has accrued, over the past few years, concerning the epigenetic regulation of heart development and disease. Epigenetic mechanisms comprise DNA methylation, ATP-dependent chromatin remodeling, histone modifications, and non-coding RNAs. Many of these processes have been ascertained to influence the tight spatiotemporal control of gene expression during cardiac development. Nevertheless, the relative contribution of each mechanism and their potentially complex interplay remain largely unexplored. Cardiac development and disease are linked through the reactivation of fetal genes upon cardiac hypertrophy and failure. In cardiac disease, changes in gene expression are accompanied and influenced by distinct changes in histone modifications. Detailed knowledge about the epigenetic pathways of cardiac development and function is expected ultimately to lead to novel therapeutic strategies for heart disease and regenerative medicine.  相似文献   

3.
Epigenetic regulation of cellular identity and function is at least partly achieved through changes in covalent modifications on DNA and histones. Much progress has been made in recent years to understand how these covalent modifications affect cell identity and function. Despite the advances, whether and how epigenetic factors contribute to memory formation is still poorly understood. In this review, we discuss recent progress in elucidating epigenetic mechanisms of learning and memory, primarily at the DNA level, and look ahead to discuss their potential implications in reward memory and development of drug addiction.  相似文献   

4.
Epigenetic regulation in plant abiotic stress responses   总被引:2,自引:0,他引:2  
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.  相似文献   

5.
Epigenetic information is encoded by DNA methylation and by covalent modifications of histone tails. While defined epigenetic modification patterns have been frequently correlated with particular states of gene activity, very little is known about the integration level of epigenetic signals. Recent experiments have resulted in the characterization of several epigenetic adaptors that mediate interactions between distinct modifications. These adaptors include methyl-DNA binding proteins, chromatin remodelling enzymes and siRNAs. Complex interactions between epigenetic modifiers and adaptors provide the foundation for the stability of epigenetic inheritance. In addition, they also provide an explanation for the long-range effects of epigenetic mechanisms. We propose that a major aspect of epigenetic regulation lies in the modification of chromosome architecture and that local changes in gene expression would be secondary consequences. This view is consistent with many results from recent genomic analyses.  相似文献   

6.
Mammalian epigenomics: reprogramming the genome for development and therapy   总被引:10,自引:0,他引:10  
Reik W  Santos F  Dean W 《Theriogenology》2003,59(1):21-32
Epigenetic modifications of DNA and chromatin are important for genome function during development and in adults. DNA and chromatin modifications have central importance for genomic imprinting and other aspects of epigenetic control of gene expression. In somatic lineages, modifications are generally stably maintained and are characteristic of different specialized tissues. The mammalian genome undergoes major reprogramming of modification patterns in germ cells and in the early embryo. Some of the factors that are involved both in maintenance and in reprogramming, such as methyltransferases, are being identified. Epigenetic reprogramming is deficient in animal cloning, which is a major explanation for the inefficiency of the cloning procedure. Deficiencies in reprogramming are likely to underlie the occurrence of epimutations and of epigenetic inheritance. Environmental factors can alter epigenetic modifications and may thus have long-lasting effects on phenotype. Epigenomics methods are being developed to catalogue genome modifications under normal and pathological conditions. Epigenetic engineering is likely to play an important role in medicine in the future.  相似文献   

7.
陈威  杨颖增  陈锋  周文冠  舒凯 《植物学报》1983,54(6):779-785
植物因其固着生长的方式, 已经进化出各类特殊的机制来适应多变的外界环境。为提高自身的存活率, 植物进化出一类胁迫记忆机制, 以适应环境和保护自己。表观遗传修饰不仅能调控植物的正常生长发育, 而且参与植物对各种非生物或生物胁迫的响应。近年的研究表明, 表观遗传修饰在植物胁迫记忆调控中也发挥重要作用。例如, DNA甲基化、组蛋白甲基化及乙酰化等表观遗传修饰参与并维持特定的胁迫记忆。该文主要对表观遗传修饰介导的植物胁迫记忆最新进展进行综述, 并展望未来的重点和热点研究方向。  相似文献   

8.
All animals have evolved solutions to manage their genomes, enabling the efficient organization of meters of DNA strands in the nucleus and allowing for nuanced regulation of gene expression while keeping transposable elements suppressed. Epigenetic modifications are central to accomplishing all these. Recent advances in sequencing technologies and the development of techniques that profile epigenetic marks and chromatin accessibility using reagents that can be used in any species has catapulted epigenomic studies in diverse animal species, shedding light on the multitude of epigenomic mechanisms utilized across the evolutionary tree. Now, comparative epigenomics is a rapidly growing field that is uncovering mechanistic aspects of epigenetic modifications and chromatin organization in non-model invertebrates, ranging from octopus to sponges. This review puts recent discoveries in the epigenetics of non-model invertebrates in historical context, and describes new insight into the patterning and functions of DNA methylation and other highly conserved epigenetic modifications.  相似文献   

9.
陈威  杨颖增  陈锋  周文冠  舒凯 《植物学报》2019,54(6):779-785
植物因其固着生长的方式, 已经进化出各类特殊的机制来适应多变的外界环境。为提高自身的存活率, 植物进化出一类胁迫记忆机制, 以适应环境和保护自己。表观遗传修饰不仅能调控植物的正常生长发育, 而且参与植物对各种非生物或生物胁迫的响应。近年的研究表明, 表观遗传修饰在植物胁迫记忆调控中也发挥重要作用。例如, DNA甲基化、组蛋白甲基化及乙酰化等表观遗传修饰参与并维持特定的胁迫记忆。该文主要对表观遗传修饰介导的植物胁迫记忆最新进展进行综述, 并展望未来的重点和热点研究方向。  相似文献   

10.
干细胞衰老理论认为,组织器官特异的成体干细胞随着衰老出现功能性衰退,从而导致组织器官生理功能的衰退甚至衰老相关疾病的发生.表观遗传机制通过精密调控基因表达,在成体干细胞的衰老过程中发挥着重要作用.近年来,机体衰老过程中成体干细胞的表观遗传调控已经成为衰老研究的热点.本综述主要总结了衰老过程中成体干细胞命运的表观遗传调控,并详细介绍了DNA甲基化与组蛋白共价修饰在成体干细胞衰老中的作用,以期为深入认识衰老本质、实现健康长寿提供启示.  相似文献   

11.
Epigenetic modifications are crucial for the identity and stability of cells, and, when aberrant, can lead to disease. During mouse development, the genome-wide epigenetic states of pre-implantation embryos and primordial germ cells (PGCs) undergo extensive reprogramming. An improved understanding of the epigenetic reprogramming mechanisms that occur in these cells should provide important new information about the regulation of the epigenetic state of a cell and the mechanisms of induced pluripotency. Here, we discuss recent findings about the potential mechanisms of epigenetic reprogramming, particularly genome-wide DNA demethylation, in pre-implantation mouse embryos and PGCs.  相似文献   

12.
Epigenetic dysregulation plays a crucial role in cardiovascular diseases. Previously, we reported that acetyltransferase p300 (ATp300) inhibitor L002 prevents hypertension‐induced cardiac hypertrophy and fibrosis in a murine model. In this short communication, we show that treatment of hypertensive mice with ATp300‐specific small molecule inhibitor L002 or C646 reverses hypertension‐induced left ventricular hypertrophy, cardiac fibrosis and diastolic dysfunction, without reducing elevated blood pressures. Biochemically, treatment with L002 and C646 also reverse hypertension‐induced histone acetylation and myofibroblast differentiation in murine ventricles. Our results confirm and extend the role of ATp300, a major epigenetic regulator, in the pathobiology of cardiac hypertrophy and fibrosis. Most importantly, we identify the efficacies of ATp300 inhibitors C646 and L002 in reversing hypertension‐induced cardiac hypertrophy and fibrosis, and discover new anti‐hypertrophic and anti‐fibrotic candidates.  相似文献   

13.
表观遗传学研究方法进展   总被引:1,自引:0,他引:1  
表观遗传调控是基因表达调控的重要组成部分,已成为当前研究的热点.目前其研究主要集中在DNA甲基化和组蛋白修饰.针对这两种表观修饰,其研究方法也取得了较太进展,一方面方法的是敏度和特异性都在不断提高;另一方面表现修饰的检测正在逐步从定性检测向定量分析方向发展,从个别位点向高通量检测发展.此外,新一代测序技术的应用特大大推动表观遗传研究的发展,包括单分子实时测序法、单分子纳米孔科序法等.综述目前常用的DNA甲基化、组蛋白修饰研究方法以及最新的单分子测序技术,并对它们在表观遗传修饰检测中的应用作了简要对比分析.  相似文献   

14.
杨莹  陈宇晟  孙宝发  杨运桂 《遗传》2018,40(11):964-976
表观遗传学修饰包括DNA、RNA和蛋白质的化学修饰,基于非序列改变所致基因表达和功能水平变化。近年来,在DNA和蛋白质修饰基础上,可逆RNA甲基化修饰研究引领了第3次表观遗传学修饰研究的浪潮。RNA存在100余种化学修饰,甲基化是最主要的修饰形式。鉴定RNA甲基化修饰酶及研发其转录组水平高通量检测技术,是揭示RNA化学修饰调控基因表达和功能规律的基础。本文主要总结了近年来本课题组与合作团队及国内外同行在RNA甲基化表观转录组学研究中取得的主要前沿进展,包括发现了RNA去甲基酶、甲基转移酶和结合蛋白,揭示RNA甲基化修饰调控RNA加工代谢,及其调控正常生理和异常病理等重要生命进程。这些系列研究成果证明RNA甲基化修饰类似于DNA甲基化,具有可逆性,拓展了RNA甲基化表观转录组学研究新领域,完善了中心法则表观遗传学规律。  相似文献   

15.
16.
《Epigenetics》2013,8(5):386-391
Epigenetic modifications play a crucial role in developmental gene regulation. These modifications, being reversible, provide a layer of information over and above the DNA sequence, that has plasticity and leads to the generation of cell type-specific epigenomes during cellular differentiation. In almost all higher eukaryotes, the oocyte provides not only its cytoplasm, mitochondria, maternally deposited RNA and proteins but also an epigenetic component in the form of DNA and histone-modifications. During spermeiogenesis however, most of the histones are replaced by protamines, leading to a loss of the epigenetic component. The sperm is, therefore, viewed as a passive carrier of the paternal genome with a disproportionate, lower epigenetic contribution except for DNA methylation, to the next generation. A recent study overturns this view by demonstrating a locus-specific retention of histones, with specific modifications in the sperm chromatin at the promoters of developmentally important genes. This programmed retention of epigenetic marks with a role in embryonic development is suggested to offset, in some measure, the dominant maternal effect. This new finding helps in addressing the question of epigenetic transmission of environmental and ‘lifestyle’ experiences across generations and raises the question of ‘parental conflict’ at the loci that may be differentially marked.  相似文献   

17.
Environmental epigenomics and disease susceptibility   总被引:1,自引:0,他引:1  
Epidemiological evidence increasingly suggests that environmental exposures early in development have a role in susceptibility to disease in later life. In addition, some of these environmental effects seem to be passed on through subsequent generations. Epigenetic modifications provide a plausible link between the environment and alterations in gene expression that might lead to disease phenotypes. An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility. Furthermore, recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype. Methods are now becoming available to investigate the relevance of these phenomena to human disease.  相似文献   

18.
19.
《Epigenetics》2013,8(4):315-325
Epigenetic modifications and microRNAs are known to play key roles in human cancer. For urological tumors, changes in epigenetic modifications and aberrant microRNA profiles have been reported. However, the mechanisms of epigenetic and microRNA regulation are not entirely separable. Increasingly, recent research in these fields overlaps. There seems to be a complicated feedback interrelationship between epigenetic and microRNA regulation that must be highly controlled. Disruptions of this feedback network can have serious consequences for various biological processes and can result in cellular transformation. Investigation of the network between microRNAs and epigenetics could lead to a better understanding of the processes involved in development and progression of urological tumors. This understanding could provide new approaches for the development of novel individualized therapies, which are adjusted to the molecular pattern of a tumor. In this review, we present an overview of microRNA-epigenetic circuits acting in urological tumors.  相似文献   

20.
BackgroundIonizing radiation (IR) plays an important role in the diagnosis and treatment of cancer. Besides the targeted effects, the non-targeted effects, which cause damage to non-irradiated cells and genomic instability in normal tissues, also play a role in the side effects of radiotherapy and have been shown to involve both alterations in DNA sequence and regulation of epigenetic modifications.Scope of reviewWe summarize the recent findings regarding epigenetic modifications that are involved in radiation-induced non-targeted effects as well as their clinical significance in radiotherapy and radioprotection.Major conclusionsEpigenetic modifications play an important role in both the realization and modulation of radiobiological effects. However, the molecular mechanisms underlying non-targeted effects still need to be clarified.General significanceA better understanding of the epigenetic mechanisms related to radiation-induced non-targeted effects will guide both individualized clinical radiotherapy and individualized precise radioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号