首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cellular signalling》2014,26(6):1355-1368
Insulin-induced insulin receptor (IR) tyrosine kinase activation and insulin cell survival responses have been reported to be under the regulation of a membrane associated mammalian neuraminidase-1 (Neu1). The molecular mechanism(s) behind this process is unknown. Here, we uncover a novel Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B G-protein coupled receptor (GPCR), which is essential for insulin-induced IR activation and cellular signaling. Neu1, MMP-9 and neuromedin B GPCR form a complex with IRβ subunit on the cell surface. Oseltamivir phosphate (Tamiflu®), anti-Neu1 antibodies, broad range MMP inhibitors piperazine and galardin (GM6001), MMP-9 specific inhibitor (MMP-9i), and GPCR neuromedin B specific antagonist BIM-23127 dose-dependently inhibited Neu1 activity associated with insulin stimulated rat hepatoma cells (HTCs) that overly express human IRs (HTC-IR). Tamiflu, anti-Neu1 antibodies and MMP-9i attenuated phosphorylation of IRβ and insulin receptor substrate-1 (IRS1) associated with insulin-stimulated cells. Olanzapine, an antipsychotic agent associated with insulin resistance, induced Neu3 sialidase activity in WG544 or 1140F01 human sialidosis fibroblast cells genetically defective in Neu1. Neu3 antagonist 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) and anti-Neu3 antibodies inhibited sialidase activity associated with olanzapine treated murine Neu4 knockout macrophage cells. Olanzapine attenuated phosphorylation of IGF-R and IRS1 associated with insulin-stimulated human wild-type fibroblast cells. Our findings identify a novel insulin receptor-signaling platform that is critically essential for insulin-induced IRβ tyrosine kinase activation and cellular signaling. Olanzapine-induced Neu3 sialidase activity attenuated insulin-induced IGF-R and IRS1 phosphorylation contributing to insulin resistance.  相似文献   

2.
The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer536) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR–MMP9–Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.  相似文献   

3.
The mechanism(s) behind GPCR transactivation of TLR receptors independent of TLR ligands is unknown. Here, GPCR agonists bombesin, bradykinin, lysophosphatidic acid (LPA), cholesterol, angiotensin-1 and -2, but not thrombin induce Neu1 activity in live macrophage cell lines and primary bone marrow macrophage cells from wild-type (WT) mice but not from Neu1-deficient mice. Using immunocytochemistry and NFκB-dependent secretory alkaline phosphatase (SEAP) analyses, bombesin induced NFκB activation in BMC-2 and RAW-blue macrophage cells, which was inhibited by MyD88 homodimerization inhibitor, Tamiflu, galardin, piperazine and anti-MMP-9 antibody. Bombesin receptor, neuromedin B (NMBR), forms a complex with TLR4 and MMP9. Silencing MMP9 mRNA using siRNA transfection of RAW-blue macrophage cells markedly reduced Neu1 activity associated with bombesin-, bradykinin- and LPA-treated cells to the untreated controls. These findings uncover a molecular organizational GPCR signaling platform to potentiate Neu1 and MMP-9 cross-talk on the cell surface that is essential for the transactivation of TLR receptors and subsequent cellular signaling.  相似文献   

4.
G protein-coupled receptors (GPCR) can participate in a number of signaling pathways, and this property led to the concept of biased GPCR agonism. Agonists, antagonists and allosteric modulators can bind to GPCRs in different ways, creating unique conformations that differentially modulate signaling through one or more G proteins. A unique neuromedin B (NMBR) GPCR-signaling platform controlling mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP9) crosstalk has been reported in the activation of the insulin receptor (IR) through the modification of the IR glycosylation. Here, we propose that there exists a biased GPCR agonism as small diffusible molecules in the activation of Neu1-mediated insulin receptor signaling. GPCR agonists bombesin, bradykinin, angiotensin I and angiotensin II significantly and dose-dependently induce Neu1 sialidase activity and IR activation in human IR-expressing rat hepatoma cell lines (HTC-IR), in the absence of insulin. Furthermore, the GPCR agonist-induced Neu1 sialidase activity could be specifically blocked by the NMBR inhibitor, BIM-23127. Protein expression analyses showed that these GPCR agonists significantly induced phosphorylation of IRβ and insulin receptor substrate-1 (IRS1). Among these, angiotensin II was the most potent GPCR agonist capable of promoting IRβ phosphorylation in HTC-IR cells. Interestingly, treatment with BIM-23127 and Neu1 inhibitor oseltamivir phosphate were able to block GPCR agonist-induced IR activation in HTC cells in vitro. Additionally, we found that angiotensin II receptor (type I) exists in a multimeric receptor complex with Neu1, IRβ and NMBR in naïve (unstimulated) and stimulated HTC-IR cells with insulin, bradykinin, angiotensin I and angiotensin II. This complex suggests a molecular link regulating the interaction and signaling mechanism between these molecules on the cell surface. These findings uncover a biased GPCR agonist-induced IR transactivation signaling axis, mediated by Neu1 sialidase and the modification of insulin receptor glycosylation.  相似文献   

5.
6.
Thymoquinone (TQ) derived from the nutraceutical black cumin oil has been reported to be a novel agonist of Neu4 sialidase activity in live cells (Glycoconj J DOI 10.1007/s10719-010-9281-6). The activation of Neu4 sialidase on the cell surface by TQ was found to involve GPCR-signaling via membrane targeting of Gαi subunit proteins and matrix metalloproteinase-9 activation. Contrary to other reports, TQ had no anti-inflammatory effects in vitro. Here, we show that MyD88/TLR4 complex formation and subsequent NFκB activation are induced by the Neu4 activity associated with TQ-stimulated live primary bone marrow (BM) macrophage cells from WT and Neu1-deficient mice, HEK-TLR4/MD2 cells and BMC-2 macrophage cell line but not with primary macrophage cells from Neu4-knockout mice. Tamiflu (oseltamivir phosphate), pertussis toxin (PTX), a specific inhibitor of Gαi proteins of G-protein coupled receptor (GPCR) and the broad range inhibitor of matrix metalloproteinase (MMP) galardin applied to live primary BM macrophage cells completely block TQ-induced MyD88/TLR4 complex formation. Using immunocytochemistry and western blot analyses, Tamiflu, galardin and PTX inhibit NFκB activation induced by Neu4 activity associated with TQ-stimulated BMC-2 cells, HEK-TLR4/MD2 cells and primary BM macrophages from WT mice. EMSA analyses on HEK-TLR4/MD2 nuclear cell extracts confirm the nuclear localization and DNA binding of TQ-induced NFκB activation in a biphasic manner within 30 min. Co-immunoprecipitation experiments reveal for the first time that MMP-9 may be an important intermediate link in the TQ-induced Neu4 activity circuitously targeting TLR4 receptors. Central to this process is that Neu4 forms a complex with MMP-9, which is already bound to TLR4 receptors. Fluorescence spectrophotometer analyses of live CD14-THP1 cells treated with TQ show Neu4 sialidase activity over 5 min. Using flow cytometry analyses, CD14-THP1 cells treated with TQ express stable protein levels of Neu4, TLR4 and MMP9 on the cell surface over 30 min except for a marked diminution of MMP9 at 15 min. Using cytokine array profiling analyses of serum, Neu4-knockout mice respond poorly to TQ in producing pro-inflammatory cytokines and chemokines after 5-h treatment compared to the wild-type or hypomorphic cathepsin A mice with a secondary 90% Neu1 deficient mice. Our findings establish an unprecedented signaling paradigm for TQ-induced Neu4 sialidase activity. It signifies that MMP-9 forms an important molecular signaling platform in complex with TLR4 receptors at the ectodomain and acts as the intermediate link for TQ-induced Neu4 sialidase in generating a functional receptor with subsequent NFκB activation and pro-inflammatory cytokine production in vivo.  相似文献   

7.
The G-protein coupled receptor (GPCR) fMLP receptor (FPR) and the two receptors tyrosine kinase (RTK), the nerve growth factor (NGF) receptor TrkA and the epidermal growth factor (EGF) receptor (EGFR) are involved in reactive oxygen species (ROS), matrix metalloproteinase-9 (MMP-9) production and CD11b membrane integrin upregulation. We show that in monocytes the three receptors crosstalk each other to modulate these pro-inflammatory mediators. Tyrphostin AG1478, the EGFR inhibitor, inhibits fMLP and NGF-associated ROS production, fMLP-associated CD11b upregulation and NGF-induced TrkA phosphorylation; K252a, the NGF receptor inhibitor, inhibits fMLP or EGF-associated ROS production, CD11b expression and EGF-induced EGFR phosphorylation; cyclosporine H, the FPR inhibitor inhibits EGF or NGF-associated ROS production, EGF-associated CD11b upregulation and prevents EGFR and TrkA phosphorylation by their respective ligand EGF and NGF. In response to fMLP, TrkA phosphorylation is inhibited by the EGFR inhibitor while EGFR phosphorylation is inhibited by the TrkA inhibitor. Receptor crosstalks are Src and ERK dependent. Down-regulation of each receptor by specific siRNA suppresses the ability of the two other receptors to promote ligand-mediated ERK phosphorylation and pro-inflammatory activities including ROS, MMP-9 production and CD11b upregulation. Thus, in monocytes GPCR ligands' activity involves activation of RTK while RTK-ligands activity engages GPCR-signalling molecules.  相似文献   

8.
Proximal events in signaling by plasma membrane estrogen receptors   总被引:18,自引:0,他引:18  
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for Galpha(q) and Galpha(i) blocked E2-induced, EGFR-dependent ERK activation, and Gbetagamma also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38beta MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ERalpha to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer.  相似文献   

9.
10.
11.
In vascular smooth muscle cells (VSMCs), angiotensin II (AngII) induces transactivation of the EGF receptor (EGFR) which involves a metalloprotease that stimulates processing of heparin-binding EGF from its precursor. However, the identity and pharmacological sensitivity of the metalloprotease remain unclear. Here, we screened the effects of several metalloprotease inhibitors on AngII-induced EGFR transactivation in VSMCs. We found that an N-phenylsulfonyl-hydroxamic acid derivative [2R-[(4-biphenylsulfonyl)amino]-N-hydroxy-3-phenylpropinamide] (BiPS), previously known as matrix metalloprotease (MMP)-2/9 inhibitor, markedly inhibited AngII-induced EGFR transactivation, whereas the MMP-2 or -9 inhibition by other MMP inhibitors failed to block the transactivation. BiPS markedly inhibited AngII-induced ERK activation and protein synthesis without affecting AngII-induced intracellular Ca2+ elevation. VSMC migration induced by AngII was also inhibited not only by an EGFR inhibitor but also by BiPS. Thus, BiPS is a specific candidate to block AngII-induced EGFR transactivation and subsequent growth and migration of VSMCs, suggesting its potency to prevent vascular remodeling.  相似文献   

12.
The number of epidermal growth factor receptors (EGFRs) and their ligands are highly expressed in malignant tumor cells. The EGF signaling pathway is also activated in up to one-third of patients with breast cancer. In this study, we investigated the novel function of the JAK3 inhibitor, WHI-P131, on EGF-induced MMP-9 expression and the regulatory mechanism of EGF-induced MMP-9 expression in SKBR3 cells. We observed that EGF increased MMP-9 mRNA and protein expression in a dose-dependent manner. EGF also induced the phosphorylation of EGFR, ERK, and STAT-3, and these effects were inhibited by the EGFR inhibitor, AG1478. To investigate the involvement of the STAT-3 pathway on EGF-induced MMP-9 expression, we pretreated SKBR3 cells with JAK1, JAK2, and JAK3 inhibitors prior to EGF treatment. The results showed that the JAK3 inhibitor, WHI-P131, as well as JAK3 siRNA transfection, but not the JAK1 and JAK2 inhibitors, significantly decreased EGF-induced MMP-9 expression. In addition, EGF-induced STAT-3 phosphorylation was only inhibited by WHI-P131. We then transfected cells with adenoviral STAT-3 (Ad-STAT-3), followed by treatment with EGF. Interestingly, EGF-induced MMP-9 expression was decreased by Ad-STAT-3 overexpression in a dose-dependent manner, while it was significantly increased by STAT-3 siRNA transfection. Our results also showed that basal levels of MMP-9 expression were significantly increased by constitutive active-MEK (CA-MEK) overexpression. EGF-induced ERK phosphorylation was prevented by WHI-P131, but not by JAK1 and JAK2 inhibitors. On the other hand, EGF-induced MMP-9 expression was decreased by the MEK1/2 inhibitor, UO126. Therefore, for the first time, we suggest that the JAK3 inhibitor, WHI-P131, inhibits EGF-induced STAT-3 phosphorylation as well as ERK phosphorylation. The JAK3/ERK pathway may play an important role in EGF-induced MMP-9 expression in SKBR3 cells.  相似文献   

13.
Previous work has demonstrated that cross talk between G protein-coupled LH receptors and epidermal growth factor receptors (EGFR) is essential for LH-induced steroid production in ovarian follicles and testicular Leydig cells. Here we demonstrate that G protein-coupled receptor (GPCR)/EGFR cross talk is also required for ACTH-induced steroidogenesis in Y1 adrenal cells. Moreover, we confirm that the signaling pathway from GPCR to Erk activation is conserved in all three steroidogenic tissues. ACTH or LH induces Gα(s), resulting in elevated cAMP and protein kinase A activation. cAMP/protein kinase A then triggers EGFR trans-activation, which promotes Erk signaling and subsequent steroidogenesis. Interestingly, although EGFR trans-activation is conserved in all three tissues, the specific mechanisms regulating this receptor cross talk differ. ACTH and LH trigger matrix metalloproteinase (MMP)-mediated release of EGFR ligands in adrenal and gonadal cells, respectively. However, this extracellular, ligand-dependent EGFR transactivation is required only for LH-induced steroidogenesis in ovarian follicles, reflecting the unique requirement of cell-cell cross talk for ovarian steroid production. Furthermore, MMP2 and MMP9 appear to regulate LH-induced steroidogenesis in mouse ovarian follicles, because a specific MMP2/9 inhibitor as well as the MMP2/9 inhibitor doxycycline suppress LH-induced follicular steroid production in vitro. Notably, although EGFR or MMP inhibition minimally affects estrous cycling in female mice, they attenuate ovarian steroidogenesis in response to LHR overstimulation in vivo. These results may have implications with regard to EGFR inhibitor use in various cancers as well as in polycystic ovarian syndrome, where excess LH-driven ovarian androgen production might be controlled by MMP2/9 inhibition.  相似文献   

14.
15.
The signaling pathways of mammalian Toll-like receptors (TLRs) are well characterized, but the precise mechanism(s) by which TLRs are activated upon ligand binding remains poorly defined. Recently, we reported a novel membrane sialidase-controlling mechanism that depends on ligand binding to its TLR to induce mammalian neuraminidase-1 (Neu1) activity, to influence receptor desialylation, and subsequently to induce TLR receptor activation and the production of nitric oxide and proinflammatory cytokines in dendritic and macrophage cells. The α-2,3-sialyl residue of TLR was identified as the specific target for hydrolysis by Neu1. Here, we report a membrane signaling paradigm initiated by endotoxin lipopolysaccharide (LPS) binding to TLR4 to potentiate G protein-coupled receptor (GPCR) signaling via membrane Gα(i) subunit proteins and matrix metalloproteinase-9 (MMP9) activation to induce Neu1. Central to this process is that a Neu1-MMP9 complex is bound to TLR4 on the cell surface of naive macrophage cells. Specific inhibition of MMP9 and GPCR Gα(i)-signaling proteins blocks LPS-induced Neu1 activity and NFκB activation. Silencing MMP9 mRNA using lentivirus MMP9 shRNA transduction or siRNA transfection of macrophage cells and MMP9 knock-out primary macrophage cells significantly reduced Neu1 activity and NFκB activation associated with LPS-treated cells. These findings uncover a molecular organizational signaling platform of a novel Neu1 and MMP9 cross-talk in alliance with TLR4 on the cell surface that is essential for ligand activation of TLRs and subsequent cellular signaling.  相似文献   

16.

Background

Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR) that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR).

Experimental

Findings: We report that the pure anti-androgen Casodex inhibits the growth of HT1080 cell xenografts in immune-depressed mice, revealing a novel role of AR in fibrosarcoma progression. In HT1080 cultured cells EGF, but not androgens, robustly increases DNA synthesis. Casodex abolishes the EGF mitogenic effect, implying a crosstalk between EGFR and AR. The mechanism underlying this crosstalk has been analyzed using an AR-derived small peptide, S1, which prevents AR/Src tyrosine kinase association and androgen-dependent Src activation. Present findings show that in HT1080 cells EGF induces AR/Src Association, and the S1 peptide abolishes both the assembly of this complex and Src activation. The S1 peptide inhibits EGF-stimulated DNA synthesis, cell matrix metalloproteinase-9 (MMP-9) secretion and invasiveness of HT1080 cells. Both Casodex and S1 peptide also prevent DNA synthesis and migration triggered by EGF in various human cancer-derived cells (prostate, breast, colon and pancreas) that express AR.

Conclusion

This study shows that targeting the AR domain involved in AR/Src association impairs EGF signaling in human fibrosarcoma HT1080 cells. The EGF-elicited processes inhibited by the peptide (DNA synthesis, MMP-9 secretion and invasiveness) cooperate in increasing the aggressive phenotype of HT1080 cells. Therefore, AR represents a new potential therapeutic target in human fibrosarcoma, as supported by Casodex inhibition of HT1080 cell xenografts. The extension of these findings in various human cancer-derived cell lines highlights the conservation of this process across divergent cancer cells and identifies new potential targets in the therapeutic approach to human cancers.  相似文献   

17.
Cross-communication between the Met receptor tyrosine kinase and the epidermal growth factor receptor (EGFR) has been proposed to involve direct association of both receptors and EGFR kinase-dependent phosphorylation. Here, we demonstrate that in human hepatocellular and pancreatic carcinoma cells the Met receptor becomes tyrosine phosphorylated not only upon EGF stimulation but also in response to G protein-coupled receptor (GPCR) agonists. Whereas specific inhibition of the EGFR kinase activity blocked EGF- but not GPCR agonist-induced Met receptor transactivation, it was abrogated in the presence of a reducing agent or treatment of cells with a NADPH oxidase inhibitor. Both GPCR ligands and EGF are further shown to increase the level of reactive oxygen species within the cell. Interestingly, stimulation of the Met receptor by either GPCR agonists, EGF or its cognate ligand HGF, resulted in release of Met-associated beta-catenin and in its Met-dependent translocation into the nucleus, as analyzed by small interfering RNA-mediated knockdown of the Met receptor. Our results provide a new molecular explanation for cell surface receptor cross-talk involving the Met receptor and thereby link the wide diversity of GPCRs and the EGFR to the oncogenic potential of Met signaling in human carcinoma cells.  相似文献   

18.
Neurotrophin-induced Trk tyrosine kinase receptor activation and neuronal cell survival responses have been reported to be under the control of a membrane associated sialidase. Here, we identify an unprecedented membrane sialidase mechanism initiated by nerve growth factor (NGF) binding to TrkA to potentiate GPCR-signaling via membrane Gαi subunit proteins and matrix metalloproteinase-9 (MMP-9) activation to induce Neu1 sialidase activation in live primary neurons and TrkA- and TrkB-expressing cell lines. Central to this process is that Neu1/MMP-9 complex is bound to TrkA on the cell surface of naïve primary neurons and TrkA-expressing cells. Tamiflu completely blocks this sialidase activity in live TrkA-PC12 cells treated with NGF with an IC50 of 3.876 μM with subsequent inhibition of Trk activation in primary neurons and neurite outgrowth in TrkA-PC12 cells. Our findings uncover a Neu1 and MMP-9 cross-talk on the cell surface that is critically essential for neurotrophin-induced Trk tyrosine kinase receptor activation and cellular signaling.  相似文献   

19.
EGFR is a potent stimulator of invasion and metastasis in head and neck squamous cell carcinomas (HNSCC). However, the mechanism by which EGFR may stimulate tumor cell invasion and metastasis still need to be elucidated. In this study, we showed that activation of EGFR by EGF in HNSCC cell line SCC10A enhanced cell migration and invasion, and induced loss of epitheloid phenotype in parallel with downregulation of E-cadherin and upregulation of N-cadherin and vimentin, indicating that EGFR promoted SCC10A cell migration and invasion possibly by an epithelial to mesenchymal transition (EMT)-like phenotype change. Interestingly, activation of EGFR by EGF induced production of matrix metalloproteinase-9 (MMP-9) and soluble E-cadherin (sE-cad), and knockdown of MMP-9 by siRNA inhibited sE-cad production induced by EGF in SCC10A. Moreover, both MMP-9 knockdown and E-cadherin overexpression inhibited cell migration and invasion induced by EGF in SCC10A. The results indicate that EGFR activation promoted cell migration and invasion through inducing MMP-9-mediated degradation of E-cadherin into sE-cad. Pharmacologic inhibition of EGFR, MEK, and PI3K kinase activity in SCC10A reduced phosphorylated levels of ERK-1/2 and AKT, production of MMP-9 and sE-cad, cell migration and invasion, and expressional changes of EMT markers (E-cadherin and N-cadherin) induced by EGF, indicating that EGFR activation promotes cell migration and invasion via ERK-1/2 and PI3K-regulated MMP-9/E-cadherin signaling pathways. Taken together, the data suggest that EGFR activation promotes HNSCC SCC10A cell migration and invasion by inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin into sE-cad related to activation of ERK-1/2 and PI3K signaling pathways.  相似文献   

20.
Matrine has shown therapeutic and/or adjuvant therapeutic effects on the treatment of some patients with breast cancer. However, its mechanisms of action are largely unknown. To disclose the mechanisms, we investigated in vitro and ex vivo effects of matrine on the cancer cells. Our results confirmed that matrine significantly suppressed the proliferation of highly-metastatic human breast cancer MDA-MB-231 cell line. Matrine displayed synergistic effects with existing anticancer agents celecoxib (the inhibitor of cyclooxygenase-2), trichostatin A (the histone deacetylase inhibitor) and rosiglitazone against the proliferation and VEGF excretions in MDA-MB-231 cells. Matrine induced the apoptosis and cell cycle arrest by reducing the ratios of Bcl-2/Bax protein and mRNA levels in the cancer cells. Matrine significantly reduced the invasion, MMP-9/MMP-2 activation, Akt phosphorylation, nuclear factor κB p-65 expression and DNA binding activity, and mRNA levels of MMP-9, MMP-2, EGF and VEGFR1 in MDA-MB-231 cells. Collectively, our results suggest that matrine inhibits the cancer cell proliferation and invasion via EGF/VEGF-VEGFR1-Akt-NF-κB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号