首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Skp2 regulates G2/M progression in a p53-dependent manner   总被引:1,自引:0,他引:1  
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation.  相似文献   

3.
Endothelial cell proliferation is a critical step in angiogenesis and requires a coordinated response to soluble growth factors and the extracellular matrix. As focal adhesion kinase (FAK) integrates signals from both adhesion events and growth factor stimulation, we investigated its role in endothelial cell proliferation. Expression of a dominant-negative FAK protein, FAK-related nonkinase (FRNK), impaired phosphorylation of FAK and blocked DNA synthesis in response to multiple angiogenic stimuli. These results coincided with elevated cyclin-dependent kinase inhibitors (CDKIs) p21/Cip and p27/Kip, as a consequence of impaired degradation. FRNK inhibited the expression of Skp2, an F-box protein that targets CDKIs, by inhibiting mitogen-induced mRNA. The FAK-regulated degradation of p27/Kip was Skp2 dependent, while levels of p21/Cip were regulated independent of Skp2. Skp2 is required for endothelial cell proliferation as a consequence of degrading p27. Finally, knockdown of both p21 and p27 in FRNK-expressing cells completely restored mitogen-induced endothelial cell proliferation. These data demonstrate a critical role for FAK in the regulation of CDKIs through two independent mechanisms: Skp2 dependent and Skp2 independent. They also provide important insights into the requirement of focal adhesion kinase for normal vascular development and reveal novel regulatory control points for angiogenesis.  相似文献   

4.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

5.
We previously showed that tanshinone IIA ameliorated the hypoxia-induced pulmonary hypertension (HPH) partially by attenuating pulmonary artery remodeling. The hypoxia-induced proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the major causes for pulmonary arterial remodeling, therefore the present study was performed to explore the effects and underlying mechanism of tanshinone IIA on the hypoxia-induced PASMCs proliferation. PASMCs were isolated from male Sprague-Dawley rats and cultured in normoxic (21%) or hypoxic (3%) condition. Cell proliferation was measured with 3 - (4, 5 - dimethylthiazal - 2 - yl) - 2, 5 - diphenyltetrazoliumbromide assay and cell counting. Cell cycle was measured with flow cytometry. The expression of of p27, Skp-2 and the phosphorylation of Akt were measured using western blot and/or RT-PCR respectively. The results showed that tanshinone IIA significantly inhibited the hypoxia-induced PASMCs proliferation in a concentration-dependent manner and arrested the cells in G1/G0-phase. Tanshinone IIA reversed the hypoxia-induced reduction of p27 protein, a cyclin-dependent kinase inhibitor, in PASMCs by slowing down its degradation. Knockdown of p27 with specific siRNA abolished the anti-proliferation of tanshinone IIA. Moreover, tanshinone IIA inhibited the hypoxia-induced increase of S-phase kinase-associated protein 2 (Skp2) and the phosphorylation of Akt, both of which are involved in the degradation of p27 protein. In vivo tanshinone IIA significantly upregulated the hypoxia-induced p27 protein reduction and downregulated the hypoxia-induced Skp2 increase in pulmonary arteries in HPH rats. Therefore, we propose that the inhibition of tanshinone IIA on hypoxia-induce PASMCs proliferation may be due to arresting the cells in G1/G0-phase by slowing down the hypoxia-induced degradation of p27 via Akt/Skp2-associated pathway. The novel information partially explained the anti-remodeling property of tanshinone IIA on pulmonary artery in HPH.  相似文献   

6.
7.
Objectives:To investigate the effects of miR-451a targeting interleukin-6 (IL-6) on the proliferation and apoptosis of multiple myeloma (MM) cells and its potential mechanism via JAK2/STAT3 pathway.Methods:mRNA expression of miR-451a and IL-6R in the plasma of patients with MM and normal controls were determined by RT-qPCR. U266 cells were cultured, transfected with miR-451a mimics, the proliferative ability of U266 cells was determined by CCK-8. Potential targets of miR-451a were predicted with the biological software TargetScan, and the direct relationship between miR-451a and the target IL-6R was analyzed by a dual-luciferase reporter assay. U266 cells were stimulated with IL-6R (100 ng/ml), and the proliferative ability and apoptosis rate were determined by CCK-8 and flow cytometry after 48h.Results:In the plasma of patients with MM, miR-451a expression was low and IL-6R expression was high. miR-451a targeted and negatively regulated IL-6R. Overexpressing miR-451a inhibited the proliferation and promoted the apoptosis of U266 cells. IL-6R acting on U266 cells promoted the proliferation and inhibited the apoptosis of U266 cells. Overexpressing miR-451a inhibited the activation of JAK2/STAT3 pathway and down-regulating miR-451a promoted the activation of JAK2/STAT3 pathway.Conclusions:miR-451a targeting IL-6R activates JAK2/STAT3 pathway, thus regulates the proliferation and apoptosis in MM cells.  相似文献   

8.
9.
Skp2 is well known as the F-box protein of the SCF(Skp2) x Roc1 complex targeting p27 for ubiquitylation. Skp2 also forms complexes with cyclin A, which is particularly abundant in cancer cells due to frequent Skp2 overexpression, but the mechanism and significance of this interaction remain unknown. Here, we report that Skp2-cyclin A interaction is mediated by novel interaction sequences on both Skp2 and cyclin A, distinguishing it from the well known RXL-hydrophobic patch interaction between cyclins and cyclin-binding proteins. Furthermore, a short peptide derived from the mapped cyclin A binding sequences of Skp2 can block Skp2-cyclin A interaction but not p27-cyclin A interaction, whereas a previously identified RXL peptide can block p27-cyclin A interaction but not Skp2-cyclin A interaction. Functionally, Skp2-cyclin A interaction is separable from Skp2 ability to mediate p27 ubiquitylation. Rather, Skp2-cyclin A interaction serves to directly protect cyclin A-Cdk2 from inhibition by p27 through competitive binding. Finally, we show that disruption of cyclin A binding with point mutations in the cyclin A binding domain of Skp2 compromises the ability of overexpressed Skp2 to counter cell cycle arrest by a p53/p21-mediated cell cycle checkpoint without affecting its ability to cause degradation of cellular p27 and p21. These findings reveal a new functional mechanism of Skp2 and a new regulatory mechanism of cyclin A.  相似文献   

10.
Cancer cell growth was increased when co-cultured with fibroblasts, however, no effect was observed when co-cultured with TIS21-overexpressed fibroblast. Therefore, the role of TIS21 played in cancer microenvironment was investigated. TIS21 decreased interleukin-6 (IL-6) expression in human dermal fibroblast (HDF). Adenoviral transduction of TIS21 gene to HDF decreased the secretion of IL-6, whereas knockdown of the gene increased IL-6 expression. Furthermore, TIS21 overexpression inhibited STAT3 binding to IL-6 promoter region as well as JAK2–STAT3 signaling by inhibiting reactive oxygen species (ROS) generation by being localized in mitochondria. Mitochondria-target TIS21 (MT-TIS21) also inhibited IL-6 expression by downregulating STAT3 phosphorylation, whereas NF-κB pathway was not influenced by TIS21 expression. These results indicate that TIS21 negatively regulated cancer cell growth by inhibiting IL-6 expression through downregulation of STAT3 activation.  相似文献   

11.
12.
13.
Skp2 suppresses p53-dependent apoptosis by inhibiting p300   总被引:1,自引:0,他引:1  
The F box protein Skp2 is oncogenic, and its frequent amplification and overexpression correlate with the grade of malignancy of certain tumors. Conversely, depletion of Skp2 decreases cell growth and increases apoptosis. Here, we show that Skp2 counteracts the transactivation function of p53 and suppresses apoptosis mediated by DNA damage or p53 stabilization. We demonstrate that Skp2 forms a complex with p300 through the CH1 and the CH3 domains of p300 to which p53 is thought to bind and antagonizes the interaction between p300 and p53 in cells and in vitro. As Skp2 antagonizes the interaction between p300 and p53, Skp2 suppresses p300-mediated acetylation of p53 and the transactivation ability of p53. Conversely, ectopic expression of p300 rescues the transactivation function of p53 in cells overexpressing Skp2. Taken together, our results indicate that Skp2 controls p300-p53 signaling pathways in cancer cells, making Skp2 a potential molecular target for cancer therapy.  相似文献   

14.
Treatment of primary rat hepatocytes or tranfected HepG2 cells with the alpha(1B)-adrenergic receptor (alpha(1B)AR) agonist phenylephrine (PE) significantly inhibited interleukin 6 (IL-6)-induced STAT3 binding, tyrosine phosphorylation, and IL-6-induced serum amyloid A mRNA expression. Western analyses and in vitro kinase assays indicate that this inhibition is not due to either down-regulation of STAT3 protein expression nor inactivation of upstream-located JAK1 and JAK2. Blocking the new RNA and protein syntheses antagonized the inhibitory effect of PE on IL-6-activated STAT3, suggesting synthesis of an inhibitory factor(s) is involved. The inhibitory effect of PE on IL-6 activation of STAT3 was also abolished by the tyrosine phosphatase inhibitor sodium vanadate, indicating involvement of protein tyrosine phosphatases. Furthermore, preincubation of the cells with the specific MEK1 inhibitor PD98059 or a dominant negative MEK1 reversed the inhibitory effect of PE, and expression of constitutively activated MEK1 alone abolished IL-6-activated STAT3. Taken together, these data indicate that PE inhibits IL-6 activation of STAT3 in hepatic cells by a p42/44 mitogen-activated protein kinase-dependent mechanism, and tyrosine phosphatases are involved. This inhibitory cross-talk between the alpha(1B)AR and IL-6 signaling pathways implicates the alpha(1B)AR involvement in regulating the IL-6-mediated inflammatory responses.  相似文献   

15.
16.
IL-27, a novel member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in positive and negative regulations of immune responses. We recently demonstrated that IL-27 induces Th1 differentiation through ICAM-1/LFA-1 interaction in a STAT1-dependent, but T-bet-independent mechanism. In this study, we further investigated the molecular mechanisms by focusing on p38 MAPK and ERK1/2. IL-27-induced Th1 differentiation was partially inhibited by lack of T-bet expression or by blocking ICAM-1/LFA-1 interaction with anti-ICAM-1 and/or anti-LFA-1, and further inhibited by both. Similarly, the p38 MAPK inhibitor, SB203580, or the inhibitor of ERK1/2 phosphorylation, PD98059, partially suppressed IL-27-induced Th1 differentiation and the combined treatment completely suppressed it. p38 MAPK was then revealed to be located upstream of T-bet, and SB203580, but not PD98059, inhibited T-bet-dependent Th1 differentiation. In contrast, ERK1/2 was shown to be located downstream of ICAM-1/LFA-1, and PD98059, but not SB203580, inhibited ICAM-1/LFA-1-dependent Th1 differentiation. Furthermore, it was demonstrated that STAT1 is important for IL-27-induced activation of ERK1/2, but not p38 MAPK, and that IL-27 directly induces mRNA expression of growth arrest and DNA damage-inducible 45gamma, which is known to mediate activation of p38 MAPK. Finally, IL-12Rbeta2 expression was shown to be up-regulated by IL-27 in both T-bet- and ICAM-1/LFA-1-dependent mechanisms. Taken together, these results suggest that IL-27 induces Th1 differentiation via two distinct pathways, p38 MAPK/T-bet- and ICAM-1/LFA-1/ERK1/2-dependent pathways. This is in contrast to IL-12, which induces it via only p38 MAPK/T-bet-dependent pathway.  相似文献   

17.
Janus kinase 3-severe combined immunodeficiency (JAK3-SCID) is an autosomal recessive immunodeficiency disease caused by various mutations in the JAK3 gene. Typical JAK3-SCID is characterized by a phenotype in which B cells are present but T and NK cells are not, the T?B+NK? phenotype, and by impaired signaling through cytokine receptors that use the common gamma chain (γc) subunit. An atypical JAK3-SCID case carrying a single glutamate to glycine substitution mutation (E481G) in the JH3 domain of one JAK3 allele, and a deletion mutation (del482-596) in the JH3 and JH2 domains of the other allele was reported previously. Although this patient had CD4+ T cells and NK cells unlike typical cases, the CD4+ T cells were functionally impaired. We report here that the JAK3-E481G mutant transduced IL-2-, IL-4-, IL-15-, and IL-21-induced signals as efficiently as wild-type JAK3. However, this mutant failed to respond to IL-7 by phosphorylating JAK1, JAK3, or STAT5. The other mutant JAK3, JAK3-del482-596, was non-functional. Thus, an impaired IL-7 signal may cause SCID and compromise T-cell differentiation, even if the IL-15 signal is preserved and supports NK-cell development, as in this patient.  相似文献   

18.
The cyclin-dependent kinase inhibitor p27(Kip1) is a critical regulator of T cell proliferation. To further examine the relationship of T cell proliferation and differentiation, we examined the ability of T cells deficient in p27(Kip1) to differentiate into Th subsets. We observed increased Th2 differentiation in p27(Kip1)-deficient cultures. In addition to increases in CD4(+) and CD8(+) T cells, there is a similar increase in gamma delta T cells in p27(Kip1)-deficient mice compared with wild-type mice. The increase in Th2 differentiation is correlated to an increase of IL-4 secretion by CD4(+)DX5(+)TCR alpha beta(+)CD62L(low) T cells but not to increased expansion of differentiating Th2 cells. While STAT4- and STAT6-deficient T cells have diminished proliferative responses to IL-12 and IL-4, respectively, proliferative responses are increased in T cells doubly deficient in p27(Kip1) and STAT4 or STAT6. In contrast, the increased proliferation and differentiative capacity of p27(Kip1)-deficient T cells has no effect on the ability of STAT4/p27(Kip1)- or STAT6/p27(Kip1)-deficient CD4(+) cells to differentiate into Th1 or Th2 cells, respectively. Thus, while p27(Kip1) regulates the expansion and homeostasis of several T cell subsets, it does not affect the differentiation of Th subsets.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号