首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: DC are commonly defined as HLA-DR+/Lin- cells that can be CD11c+ + + CD123+/ -, termed DC1/myeloid DC that induce a Th1 response, or CD11c- CD123+ + +, termed DC2/lymphoid DC that induce a Th2 response. However, significant heterogeneity within DC preparations is apparent and supports the existence of several distinct DC subpopulations. This study aimed to expand and characterize CD34+ DC for use in immunotherapy. METHODS: CD34+ cells were seeded at 1 x 10(5)/mL and expanded for 14 days in RPMI + 10% autologous plasma supplemented with GM-CSF, IL-4, Flt-3L and SCF. Maturation was induced with TNF-alpha and PGE2 for 2 days. DC were analyzed morphologically, phenotypically with a panel of MAb to lineage and DC markers, and functionally in MLR, T-cell assays and T-cell cytokine secretion by ELISA. RESULTS: Significant cellular expansion was observed: 60+/-5 x 10(6) DC from 1 x 10(6) CD34+ cells (n=28). Phenotypically DC were characterized as HLA-DR+ +, CD11c+ + +, CD80+ +, CD83+, CD86+ +, CD123+ +, CD15+ +, CD33+ +, BDCA-1+ +, CD4+ and Lin-. DC displayed potent allostimulatory capacity and efficient presentation of KLH and tetanus toxin. DC-primed T cells secreted IFN-gamma (Th1); however, no detectable IL-4 (Th2) was noted. DISCUSSION: We present features of CD34+ DC that have not been previously described. The CD34+ DC generated represent a population of myeloid DC functioning as DC1 but phenotypically expressing markers characteristic of both DC1 and DC2. This novel DC population is capable of inducing naive T-cell responses and can be expanded to clinically useful numbers. CD34+-derived DC represent attractive candidates for use in adoptive T-cell immunotherapy.  相似文献   

2.
(1) Contrary to what has usually been assumed, (Na+ + K+)-ATPase slowly hydrolyses AdoPP[NH]P in the presence of Na+ + Mg2+ to ADP-NH2 and Pi. The activity is ouabain-sensitive and is not detected in the absence of either Mg2+ or Na2+. The specific activity of the Na+ + Mg2+ dependent AdoPP[NH]P hydrolysis at 37°C and pH 7.0 is 4% of that for ATP under identical conditions and only 0.07% of that for ATP in the presence of K+. The activity is not stimulated by K+, nor can K+ replace Na+ in its stimulatory action. This suggests that phosphorylation is rate-limiting. Stimulation by Na+ is positively cooperative with a Hill coefficient of 2.4; half-maximal stimulation occurs at 5–9 mM. The Km value for AdoPP[NH]P is 17 μM. At 0°C and 21°C the specific activity is 2 and 14%, respectively, of that at 37°C. AMP, ADP and AdoPP[CH2]P are not detectably hydrolysed by (Na+ + K+)-ATPase in the presence of Na+ + Mg2+. (2) In addition, AdoPP[NH]P undergoes spontaneous, non-enzymatic hydrolysis at pH 7.0 with rate constants at 0, 21 and 37°C of 0.0006, 0.006 and 0.07 h?1, respectively. This effect is small compared to the effect of enzymatic hydrolysis under comparable conditions. Mg2+ present in excess of AdoPP[NH]P reduces the rate constant of the spontaneous hydrolysis to 0.005 h?1 at 37°C, indicating that the MgAdoPP[NH]P complex is virtually stable to spontaneous hydrolysis, as is also the case for its enzymatic hydrolysis. (3) A practical consequence of these findings is that AdoPP[NH]P binding studies in the presence of Na+ + Mg2+ with enzyme concentrations in the mg/ml range are not possible at temperatures above 0°C. On the other hand, determination of affinity in the (Na+ + K+)-ATPase reaction by competition with ATP at low protein concentrations (μg/ml range) remains possible without significant hydrolysis of AdoPP[NH]P even at 37°C.  相似文献   

3.
4.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

5.
6.
1. Ascorbic acid, diamide and N-ethylmaleimide inhibit Na+ + K+-ATPase activity in toad corneal epithelium. 2. Ascorbic acid, diamide and N-ethylmaleimide increase alpha-aminoisobutyric acid accumulation in this tissue. 3. The effects of these compounds on corneal amino acid and ion transport are not mediated through alterations in Na+ + K+-ATPase activity.  相似文献   

7.
8.
The transport of Na+ by a purified sarcolemmal vesicular preparation from canine ventricular tissue was studied as a function of both internal and external pH. The uptake of Na+ into sarcolemmal vesicles increased upon raising the extravesicular pH of the reaction medium. Half-maximal uptake of Na+ was observed at a pHo of about 8.1 and maximal uptake occurred at pH 8.6. The uptake of Na+ by sarcolemma was also dependent upon the intravesicular pH. Na+ uptake into sarcolemmal vesicles was greatly attenuated in the absence of a H+ gradient across the membrane. Transport of Na+ was potently inhibited by amiloride, a known blocker of Na+-H+ exchange. LiCl was also an effective inhibitor of Na+ transport. In the presence of optimal H+ gradients, Na+ uptake was linear for the first 5 seconds of the reaction and exhibited a Vmax of 290 nmol Na+/mg per min and a KNa of 3.5 mM. These experiments strongly indicate the presence of a Na+-H+ exchange system in cardiac sarcolemma. This activity appeared to be relatively specific for this membrane fraction. The identification of Na+-H+ exchange activity in a sarcolemmal vesicular fraction from the heart will permit extensive characterization of the regulation and kinetics of this antiporter in future investigations.  相似文献   

9.
10.
Na+-Ca2+ exchange in human neutrophils   总被引:4,自引:0,他引:4  
  相似文献   

11.
Several carriers mediate ionic fluxes across the plasma membrane in a variety of mammalian cell types. Intracellular proton concentration is regulated by virtue of the operation of at least two distinct systems: a stilbene-sensitive, Na+- dependent HCO3-/Cl- exchange system, and an amiloride-sensitive Na+/H+ antiporter. The contribution of these two transporters to the modulation of intracellular pH in response to either extracellular pH variations or cell stimulation by growth factors and tumor promoters has been studied in several cell lines, including fibroblast mutants lacking Na+/H+ antiport activity. The attainment of a permissive intracellular pH value is critical to the development of the mitogenic response elicited by growth factors. Kinetic studies have revealed particular features of the Na+/H+ antiporter that explain its function in the early sequence of biochemical events leading to DNA replication. The detailed investigation of the mechanisms by which protons and other ions might regulate cell proliferation has important implications for the understanding of the role of pH microenvironment in carcinogenesis, tumor development and chemotherapy.  相似文献   

12.
13.

SUMMARY

In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H+ transport across biological membranes (H+-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na+ (Na+-pyrophosphatase) or both Na+ and H+ (Na+,H+-pyrophosphatase). Both these transporters require Na+ for pyrophosphate hydrolysis and are further activated by K+. The determination of the three-dimensional structures of H+- and Na+-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms.  相似文献   

14.
15.
The effects of altered external sodium and potassium concentrations on steady state, active Na+ + K+ transport in Ehrlich ascites tumor cells have been investigated. Membrane permeability to Na+ and K+, intracellular [Na+] and [K+], and membrane potential were measured. Active cation fluxes were calculated as equal and membrane potential were measured. Active cation fluxes were calculated as equal and opposite to the net, diffusional leak fluxes. Elevation of external K+ (6–60 Mm)by equivalent replacement of Na+ (154–91 mM) inhibits both active Na+ and K+ fluxes, but not proportionally. This results in a decrease of the coupling ratio (rp = -Jkp/J) as external K+ is increased. Elevation of external K+ (3–68 mM) at constant Na+ (92mM) inbibits J, but is without effect on J. The coupling ratio declines from 1.01 ± 0.14 to 0.07 ± 0.05, a 14-fold alteration. Reduction of external Na+ (154–25 mM) at constant K+ (6mM) depresses J, but is without effect on J. The coupling ratio increases from 0.63 ± 0.04 at 154 mM Na+ to 4.5 ± 2.04 at 25 mM Na+. The results of this investigation are consistent with the independent regulation of active cation fluxes by the transported species. Kinetic analysis of the data indicates that elevation of external sodium stimulates active sodium efflux by interacting at “modifier sites” at the outer cell surface. Similarly, external potassium inhibits active potassium influx by interaction at separate modifier sites.  相似文献   

16.
The effect of a transmembrane pH gradient on the ouabain, bumetanide, and phloretin resistant H+ efflux was studied in rabbit erythrocytes. Proton equilibration was reduced by the use of DIDS (125 microM) and acetazolamide (1 mM). H+ efflux from acid loaded erythrocytes (pHi = 6.1) was measured in a K+ (145 mM) medium, pH0 = 8.0, in the presence and absence of 60 microM 5,N,N-dimethyl-amiloride (DMA). The H+ efflux rate in a K+-containing medium was 116.38 +/- 4.5 mmol/l cell X hr. Substitution of Nao+ for Ko+ strongly stimulated H+ efflux to 177.89 +/- 7.9 mmol/l cell X hr. The transtimulation of H+ efflux by Nao+ was completely abolished by DMA falling to values not different from controls with an ID50 of about 8.6 X 10(-7) M. The sequence of substrate selectivities for the external transport site were Na greater than greater than greater than Li greater than choline, Cs, K, and Glucamine. The transport system has no specific anion requirement, but is inhibited by NO3-. The DMA sensitive H+ efflux was a saturable function of [Na+]o, with an apparent Km and Vmax of about 14.75 +/- 1.99 mM and 85.37 +/- 7.68 mmol/l cell X hr, respectively. However, the Nao+-dependent and DMA-sensitive H+ efflux was sigmoidally activated by [H+]i, suggesting that Hi+ interacts at both transport and modifier sites. An outwardly directed H+ gradient (pHi 6.1, pH = 8.0) also promoted DMA sensitive Na+ entry (61.2 +/- 3.0 mmol/l cell X hr) which was abolished when pHo was reduced to 6.0. The data is therefore consistent with the presence of a Na+/H+ exchange system in rabbit erythrocytes.  相似文献   

17.
The treatment of rat thymocytes with A23187 + Ca2+, ascorbate-phenazine methosulphate or propranolol induced quinine-sensitive fluxes of K+ (Rb+) suggesting the presence in the cell membrane of Ca2+-dependent K+ channels. Concanavalin A induced K+ channel activation only at very high doses (13 micrograms/ml). Neither quinine nor the increase of the K+ concentration in the medium to 30 mM prevented the stimulation of amino acid transport induced by concanavalin A, suggesting that the Ca2+-dependent K+ channel is not involved in the early phenomena of lymphocyte activation.  相似文献   

18.
19.
This paper presents electrophysiological evidence that small changes in [K+]o modulate the activity of the Na+-K+ pump on the apical membrane of the frog retinal pigment epithelium (RPE). This membrane also has a large relative K+ conductance so that lowering [K+]o hyperpolarizes it and therefore increases the transepithelial potential (TEP). Ba2+, a K+ channel blocker, eliminated these normal K+-evoked responses; in their place, lowering [K+]o evoked an apical depolarization and TEP decrease that were blocked by apical ouabain or strophanthidin. These data indicate that Ba2+ blocked the major K+ conductance(s) of the RPE apical membrane and unmasked a slowing of the normally hyperpolarizing electrogenic Na+-K+ pump caused by lowering [K+]o. Evidence is also presented that [K+]o modulates the pump in the isolated RPE under physiological conditions (i.e., without Ba2+). In the intact retina, light decreases subretinal [K+]o and produces the vitreal-positive c-wave of the electroretinogram (ERG) that originates primarily in the RPE from a hyperpolarization of the apical membrane and TEP increase. When Ba2+ was present in the retinal perfusate, the apical membrane depolarized in response to light and the TEP decreased so that the ERG c-wave inverted. The retinal component of the c-wave, slow PIII, was abolished by Ba2+. The effects of Ba2+ were completely reversible. We conclude that Ba2+ unmasks a slowing of the RPE Na+-K+ pump by the light-evoked decrease in [K+]o. Such a response would reduce the amplitude of the normal ERG c-wave.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号