首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of bone depends on a continuous supply of bone-degrading osteoclasts. Although several factors such as the matrix metalloproteinases and the integrins have been shown to be important for osteoclast recruitment, the mechanism of action remains poorly understood. In this study we investigated the molecular mechanisms homing osteoclasts to their future site of resorption during bone development. We show that RANKL and VEGF, two cytokines known to be present in bone, possess chemotactic properties toward osteoclasts cultured in modified Boyden chambers. Furthermore, in ex vivo cultures of embryonic murine metatarsals, a well established model of osteoclast recruitment, antagonists of RANKL and VEGF reduced calcium release, showing that both cytokines play roles during bone development. In cultures of purified osteoclasts both RANKL and VEGF induced phosphorylation of ERK1/2 MAP kinase. M-CSF, a well-known chemoattractant of osteoclast, also induced activation of ERK1/2, although this activation followed a kinetic pattern differing from that of RANKL and VEGF. RANKL and VEGF-induced, but not M-CSF-induced, osteoclast invasion was completely blocked by the specific inhibitor of ERK1/2 phosphorylation, PD98059. In addition, PD98059 was able to inhibit calcium release in cultures of embryonic metatarsals. In contrast, PD98059 was unable to abrogate the RANKL-induced calcium release in the tibia model, demonstrating that only some of the RANKL functions on osteoclast physiology are regulated through the ERK1/2 pathway. Taken together, these results show that RANKL and VEGF, in addition to their role in osteoclast differentiation and activation of resorption, are important components of the processes regulating osteoclast chemotaxis.  相似文献   

2.
We have examined highly purified osteoclasts that were generated in vitro from murine co-culture of marrow precursors with stromal support cells and have found evidence of activation of the MEK/ERK and AKT/NFkappaB survival pathways. Many mature marrow-derived osteoclasts survived for at least 48 h in culture whether or not they are maintained with stromal cells. Moreover, supplementing purified osteoclasts with RANKL and/or M-CSF had no impact on their survival pattern. In addition, spleen-derived osteoclasts generated with RANKL and M-CSF treatment exhibited a similar survival pattern. Blocking MEK, AKT, or NFkappaB activity resulted in apoptosis of many, but not all, of the osteoclasts in purified marrow-derived osteoclasts, marrow-derived osteoclasts co-cultured with stromal cells, and spleen-derived osteoclasts maintained with RANKL and M-CSF. These data support that both the MEK/ERK and AKT/NFkappaB pathways contribute to osteoclast survival. Since PI3K has been shown to activate either of these pathways, we have examined its role in osteoclast survival. PI3K inhibition caused apoptosis of nearly all osteoclasts in purified and co-cultured marrow-derived osteoclasts and spleen-derived osteoclasts maintained with RANKL and M-CSF. Interestingly, in marrow-derived co-cultures, the apoptotic response was restricted to osteoclasts as there was no evidence of stromal support cell apoptosis. PI3K inhibition also blocked MEK1/2, ERK1/2, and AKT phosphorylation and NFkappaB activation in purified osteoclasts. Simultaneous blockage of both AKT and MEK1/2 caused rapid apoptosis of nearly all osteoclasts, mimicking the response to PI3K inhibition. These data reveal that PI3K coordinately activates two distinct survival pathways that are both important in osteoclast survival.  相似文献   

3.
Macrophage-CSF (M-CSF) is critical for osteoclast (OC) differentiation and is reported to enhance mature OC survival and motility. However, its role in the regulation of bone resorption, the main function of OCs, has not been well characterised. To address this we analysed short-term cultures of fully differentiated OCs derived from human colony forming unit-granulocyte macrophages (CFU-GM). When cultured on dentine, OC survival was enhanced by M-CSF but more effectively by receptor activator of NFκB ligand (RANKL). Resorption was entirely dependent on the presence of RANKL. Co-treatment with M-CSF augmented RANKL-induced resorption in a concentration-dependent manner with a (200-300%) stimulation at 25 ng/mL, an effect observed within 4-6 h. M-CSF co-treatment also increased number of resorption pits and F-actin sealing zones, but not the number of OCs or pit size, indicating stimulation of the proportion of OCs activated. M-CSF facilitated RANKL-induced activation of c-fos and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, but not NFκB nor nuclear factor of activated T-cells, cytoplasmic-1 (NFATc1). The mitogen-activated protein kinase kinase (MEK) 1 inhibitor PD98059 partially blocked augmentation of resorption by M-CSF. Our results reveal a previously unidentified role of M-CSF as a potent stimulator of mature OC resorbing activity, possibly mediated via ERK upstream of c-fos.  相似文献   

4.
5.
Multiple roles of M-CSF in human osteoclastogenesis   总被引:2,自引:0,他引:2  
Although the critical role of M-CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU-GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M-CSF. Short-term treatment of precursors with M-CSF (10-100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M-CSF (1-100 ng/mL) for 14 days caused a biphasic concentration-dependent stimulation of formation, fusion, and resorption peaking at 10-50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time-course studies using M-CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M-CSF treatment. When treatment was restricted to the first 4 days, M-CSF (25-100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M-CSF signaling with neutralizing M-CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M-CSF during the second week of culture caused a small increase in osteoclast number and a concentration-dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M-CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M-CSF modulates osteoclast-resorbing activity, but is not required for survival. Modulation of M-CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption.  相似文献   

6.
Survival and apoptosis are crucial aspects of the osteoclast life cycle. Although osteoclast survival has been extensively studied, little is known about the mechanisms involved in human osteoclast apoptosis. In the present study, cord blood monocytes (CBMs) were used as the source of human osteoclast precursors. When cultured in the presence of M-CSF and RANKL, CBMs formed multinucleated cells that expressed RANK and calcitonin receptor, and were able to resorb bone. These cells expressed TRAIL receptors (R1-R4). Surprisingly, although TRAIL-receptor expression was not detectable in osteoclasts from normal bone, osteoclasts from myeloma specimens did express TRAIL receptors to a variable extent. Significantly, we have shown for the first time that this pathway is indeed functional in human osteoclasts, and that apoptosis occurred and was significantly greater in the presence of TRAIL. In addition, we have shown that a Fas-activating antibody is also able to induce osteoclast apoptosis, as did TGFbeta, whereas the survival factor M-CSF decreased apoptosis. Overall, these findings suggest that death receptors, TRAIL receptors and Fas, could be involved in osteoclast apoptosis in humans.  相似文献   

7.
8.
9.
10.
As activation of the Ras/Raf/MEK/ERK pathway is a critical component of M-CSF-promoted osteoclast survival, determining specific mechanism by which M-CSF activates this signal transduction pathway is paramount towards advancing treatment of pathological conditions resulting in increased bone turnover. The p21 activated kinase PAK1 modulates activation of the Raf/MEK/ERK pathway by either directly activating Raf or priming MEK for activation by Raf. Therefore a role for PAK1 in M-CSF-mediated activation of the MEK/ERK pathway controlling osteoclast survival was assessed. Here we show that PAK1 is activated by M-CSF in a Ras-dependent mechanism that promotes osteoclast survival. Surprisingly, PAK1 did not modulate Raf activation or Raf-mediated MEK activation. M-CSF mediated activation of Raf was required for PAK1 activation and osteoclast survival promoted by PAK1. This survival response was MEK-independent as expression of constitutively active MEK did not rescue osteoclasts from apoptosis induced by blocking PAK1 function. Functionally, PAK1 promoted osteoclast survival by modulating expression of the IAP family member Survivin. M-CSF therefore functions to promote PAK1 activation as a novel MEK-independent Raf target to control Survivin-mediated osteoclast survival.  相似文献   

11.
Chemokines play an important role in immune and inflammatory responses by inducing migration and adhesion of leukocytes, and have also been reported to modulate osteoclast differentiation from hemopoietic precursor cells of the monocyte-macrophage lineage. In this study, we examined the effect of MIP-1 gamma, a C-C chemokine family member, on receptor activator of NF-kappa B ligand (RANKL)-stimulated osteoclast differentiation, survival, and activation. RANKL induced osteoclasts to dramatically increase production of MIP-1 gamma and to also express the MIP-1 gamma receptor CCR1, but had only minor effects on the related C-C chemokines MIP-1 alpha and RANTES. Neutralization of MIP-1 gamma with specific Ab reduced RANKL-stimulated osteoclast differentiation by 60-70%. Mature osteoclasts underwent apoptosis within 24 h after removal of RANKL, as shown by increased caspase 3 activity and DNA fragmentation. Apoptosis was reduced by the addition of exogenous MIP-1 gamma or RANKL, both of which increased NF-kappa B activation in osteoclasts. Neutralization studies showed that the prosurvival effect of RANKL was in part dependent on its ability to induce MIP-1 gamma. Finally, osteoclast activation for bone resorption was stimulated by MIP-1 gamma. Taken together, these results demonstrate that MIP-1 gamma plays an important role in the differentiation and survival of osteoclasts, most likely via an autocrine pathway.  相似文献   

12.
13.
Abnormally elevated formation and activation of osteoclasts are primary causes for a majority of skeletal diseases. In this study, we found that KP-A159, a newly synthesized thiazolopyridine derivative, inhibited osteoclast differentiation and function in vitro, and inflammatory bone loss in vivo. KP-A159 did not cause a cytotoxic response in bone marrow macrophages (BMMs), but significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). KP-A159 also dramatically inhibited the expression of marker genes related to osteoclast differentiation, including TRAP (Acp5), cathepsin K (Ctsk), dendritic cell-specific transmembrane protein (Dcstamp), matrix metallopeptidase 9 (Mmp9), and nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1). Moreover, actin ring and resorption pit formation were inhibited by KP-A159. Analysis of the signaling pathway involved showed that KP-A159 inhibited RANKL-induced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase kinase1/2 (MEK1/2). In a mouse inflammatory bone loss model, KP-A159 significantly rescued lipopolysaccharide (LPS)-induced bone loss by suppressing osteoclast numbers. Therefore, KP-A159 targets osteoclasts, and may be a potential candidate compound for prevention and/or treatment of inflammatory bone loss.  相似文献   

14.
Osteoprotegerin (OPG) is a secreted decoy receptor that recognizes RANKL, and blocks the interaction between RANK and RANKL, leading to the inhibition of osteoclast differentiation and activation. As OPG is a major inhibitor of bone resorption, we wondered whether OPG could modulate osteoclast survival/apoptosis. Osteoclast apoptosis was evaluated by adding various doses of OPG to human osteoclast cultures obtained from cord blood monocytes. Surprisingly, apoptosis decreased after adding the OPG. We hypothesized that OPG may block its second ligand, TRAIL, which is involved in osteoclast apoptosis. We showed that osteoclasts expressed TRAIL, and that TRAIL levels in the culture medium dose-dependently decreased in presence of OPG, as did the level of activated caspase-8 in osteoclasts. In addition, the expression of TRAIL by osteoclasts was not affected in the presence of OPG. Our findings suggest that OPG inhibits osteoclast apoptosis, at least in part, by binding and thus inhibiting endogenously produced TRAIL in human osteoclast cultures. TRAIL could be an autocrine factor for the regulation of osteoclast survival/apoptosis.  相似文献   

15.
16.
Differentiation of osteoclasts, the cells primarily responsible for bone resorption, is controlled by a variety of osteotropic hormones and cytokines. Of these factors, receptor activator of NF-kappaB (RANK) ligand (RANKL) has been recently cloned as an essential inducer of osteoclastogenesis in the presence of M-CSF. Here, we isolated a stroma-free population of monocyte/macrophage (M/Mphi)-like hemopoietic cells from mouse unfractionated bone cells that were capable of differentiating into mature osteoclasts by treatment with soluble RANKL (sRANKL) and M-CSF. However, the efficiency of osteoclast formation was low, suggesting the requirement for additional factors. The isolated M/Mphi-like hemopoietic cells expressed TGF-beta and type I and II receptors of TGF-beta. Therefore, we examined the effect of TGF-beta on osteoclastogenesis. TGF-beta with a combination of sRANKL and M-CSF promoted the differentiation of nearly all M/Mphi-like hemopoietic cells into cells of the osteoclast lineage. Neutralizing anti-TGF-beta Ab abrogated the osteoclast generation. These TGF-beta effects were also observed in cultures of unfractionated bone cells, and anti-TGF-beta blocked the stimulatory effect of 1, 25-dihydroxyvitamin D(3). Translocation of NF-kappaB into nuclei induced by sRANKL in TGF-beta-pretreated M/Mphi-like hemopoietic cells was greater than that in untreated cells, whereas TGF-beta did not up-regulate the expression of RANK, the receptor of RANKL. Our findings suggest that TGF-beta is an essential autocrine factor for osteoclastogenesis.  相似文献   

17.
Breast cancer commonly metastasizes to bone where its growth depends on the action of bone-resorbing osteoclasts. We have previously shown that breast cancer cells secrete factors able to directly stimulate osteoclastogenesis from receptor activator of nuclear factor κB ligand (RANKL)-primed precursors and that transforming growth factor-β (TGFβ) plays a permissive role in this process. Now, we evaluate the signaling events triggered in osteoclast precursors by soluble factors produced by MDA-MB-231 human breast carcinoma cells. In mouse bone marrow cultures and RAW 264.7 murine monocytic cells, MDA-MB-231-derived factors increased osteoclast number, size, and nucleation. These factors failed to induce Smad2 phosphorylation, and short interfering RNAs against Smad4 did not affect their ability to induce osteoclastogenesis. In contrast, MDA-MB-231 factors induced phosphorylation of p38 and ERK1/2, and pharmacological inhibitors against p38 (SB203580) and MEK1/2 (PD98059) impeded the osteoclastogenic effects of cancer-derived factors. Neutralizing antibodies against TGFβ attenuated p38 activation, whereas activation of ERK1/2 was shortened in duration, but not decreased in amplitude. ERK1/2 phosphorylation induced by cancer-derived factors was blocked by MEK1/2 inhibitor, but not by Ras (manumycin A) or Raf (GW5074) inhibitors. Inhibition of protein kinase Cα using Gö6976 prevented both ERK1/2 phosphorylation and osteoclast formation in response to MDA-MB-231-derived factors. Using microspectrofluorimetry of fura-2-AM-loaded osteoclast precursors, we have found that cancer-derived factors, similar to RANKL, induced sustained oscillations in cytosolic free calcium. The calcium chelator BAPTA prevented calcium elevations and osteoclast formation in response to MDA-MB-231-derived factors. Thus, we have shown that breast cancer-derived factors induce osteoclastogenesis through the activation of calcium/protein kinase Cα and TGFβ-dependent ERK1/2 and p38 signaling pathways.  相似文献   

18.
Connection between B lymphocyte and osteoclast differentiation pathways   总被引:8,自引:0,他引:8  
Osteoclasts differentiate from the hemopoietic monocyte/macrophage cell lineage in bone marrow through cell-cell interactions between osteoclast progenitors and stromal/osteoblastic cells. Here we show another osteoclast differentiation pathway closely connected with B lymphocyte differentiation. Recently the TNF family molecule osteoclast differentiation factor/receptor activator of NF-kappaB ligand (ODF/RANKL) was identified as a key membrane-associated factor regulating osteoclast differentiation. We demonstrate that B-lymphoid lineage cells are a major source of endogenous ODF/RANKL in bone marrow and support osteoclast differentiation in vitro. In addition, B-lymphoid lineage cells in earlier developmental stages may hold a potential to differentiate into osteoclasts when stimulated with M-CSF and soluble ODF/RANKL in vitro. B-lymphoid lineage cells may participate in osteoclastogenesis in two ways: they 1) express ODF/RANKL to support osteoclast differentiation, and 2) serve themselves as osteoclast progenitors. Consistent with these observations in vitro, a decrease in osteoclasts is associated with a decrease in B-lymphoid cells in klotho mutant mice (KL(-/-)), a mouse model for human aging that exhibits reduced turnover during bone metabolism, rather than a decrease in the differentiation potential of osteoclast progenitors. Taken together, B-lymphoid lineage cells may affect the pathophysiology of bone disorders through regulating osteoclastogenesis.  相似文献   

19.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

20.
Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption. [BMB Reports 2014; 47(8): 451-456]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号