首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Uncontrolled or sustained inflammation is the underlying cause of or actively contributes to the progression of many chronic pathologies such as atherosclerosis, arthritis, or neuroinflammatory diseases. Matricellular proteins of the CCN family (CYR61/CTGF/NOV) have emerged as localized multitasking signal integrators. These structurally conserved secreted proteins specifically interact with and signal through various extracellular partners, in particular integrins, which enable them to play crucial roles in various processes including development, angiogenesis, wound healing and diseases such as fibrosis, vascular disease and cancer. In this review, we discuss the possibility that the CCN family members could represent a putative new class of modulators of inflammation. In this context, we focused on their relationship with cytokines and chemokines. In vitro, CCN expression is finely regulated by diverse inflammatory mediators including cytokines (TNFα, IL1β, TGF-β), small factors such as prostaglandins, nitric oxide, histamine and serotonin, and extracellular matrix enzymes. In addition, CCN proteins acting alone or in concert with their specific partners appear to be potent regulators of the production of cytokines and chemokines in a context-dependent manner. Finally, emerging studies suggest a potential role for CCN proteins in chronic inflammatory diseases such as atherosclerosis, rheumatoid arthritis, inflammatory kidney diseases and neuroinflammatory pathologies such as Alzheimer’s disease. CCN members could therefore represent new potential therapeutic targets for drug development against such diseases.  相似文献   

3.
TLR activation is an important component of innate immunity but also contributes to the severity of inflammatory diseases. Cysteine cathepsins (Cat) B, L and S, which are endosomal and lysosomal proteases, participate in numerous physiological systems and are upregulated during various inflammatory disorders and cancers. Macrophages have the highest cathepsin expression and are major contributors to inflammation and tissue damage during chronic inflammatory diseases. We investigated the impact of TLR activation on macrophage Cat B, L and S activities using live-cell enzymatic assays. TLR2, TLR3 and TLR4 ligands increased intracellular activities of these cathepsins in a differential manner. TLR4-induced cytokines increased proteolytic activities without changing mRNA expression of cathepsins or their endogenous inhibitors. Neutralizing antibodies recognizing TNF-α, IL-1β and IFN-β differentially eliminated cathepsin upregulation. These findings indicate cytokines induced by MyD88-dependent and -independent signaling cascades regulate cathepsin activities during macrophage responses to TLR stimulation.  相似文献   

4.
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.  相似文献   

5.
6.
Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.  相似文献   

7.
8.
T淋巴细胞抑制急性感染的炎症反应   总被引:1,自引:0,他引:1  
炎症反应是机体针对损伤因子所产生的防御反应并伴随着红、热、肿、痛的局部临床特征.炎症反应是由多种细胞和细胞因子共同参与的复杂过程,天然免疫细胞(包括吞噬细胞、自然杀伤细胞、巨噬细胞等)是起始和推进炎症反应的重要效应细胞,而获得性免疫细胞如T细胞不仅参与后期炎症反应的发生同时还具有调节早期炎症反应的重要功能.炎症反应本身有利于清除消灭致病因子,液体的渗出可稀释毒素,吞噬搬运坏死组织以利于再生和修复,使致病因子局限在炎症部位而不致蔓延全身.另一方面,过激和长期的炎症反应又会对机体造成损伤.因此,深入研究炎症反应的机制可为治疗炎症所引起的疾病提供新的思路.  相似文献   

9.
Immune system is a complex network that clears pathogens,toxic substrates,and cancer cells.Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens.The innate immune system elicits an early-phase response to various stimuli,whereas the adaptive immune response is tailored to previously encountered antigens.During immune responses,B cells differentiate into antibody-secreting cells,while na?ve T cells differentiate into functionally specific effector cells[T helper 1(Th1),Th2,Th17,and regulatory T cells].However,enhanced or prolonged immune responses can result in autoimmune disorders,which are characterized by lymphocytemediated immune responses against self-antigens.Signal transduction of cytokines,which regulate the inflammatory cascades,is dependent on the members of the Janus family of protein kinases.Tyrosine kinase 2(Tyk2)is associated with receptor subunits of immune-related cytokines,such as type I interferon,interleukin(IL)-6,IL-10,IL-12,and IL-23.Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing.This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.  相似文献   

10.
11.
Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we emphasize the emerging roles of microRNAs (miRNAs) and other noncoding RNAs (ncRNA) in regulating chronic inflammatory states, making them important future diagnostic markers and therapeutic targets. Copyright Line: © 2015 The Authors BioEssays Published by Wiley‐VCH Verlag GmbH & Co. KGaA.  相似文献   

12.
Mast cells are critical effectors in the development of allergic diseases and in many immunoglobulin E-mediated immune responses. These cells exert their physiological and pathological activities by releasing granules containing histamine, cytokines, chemokines, and proteases, including mast cell-specific chymase and tryptase. Like macrophages and T lymphocytes, mast cells are inflammatory cells, and they participate in the pathogenesis of inflammatory diseases such as cardiovascular complications and metabolic disorders. Recent observations suggested that mast cells are involved in insulin resistance and type 2 diabetes. Data from animal models proved the direct participation of mast cells in diet-induced obesity and diabetes. Although the mechanisms by which mast cells participate in these metabolic diseases are not fully understood, established mast cell pathobiology in cardiovascular diseases and effective mast cell inhibitor medications used in pre-formed obesity and diabetes in experimental models offer hope to patients with these common chronic inflammatory diseases. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

13.
Ohashi K  Ouchi N  Matsuzawa Y 《Biochimie》2012,94(10):2137-2142
Obesity-related disorders, such as insulin resistance, hypertension and atherosclerosis, are associated with chronic inflammation. Adiponectin is an adipocyte-derived secreted factor that is down-regulated in obese states. Adiponectin exerts the protective actions on obesity-linked diseases, such as insulin resistance and atherosclerosis by attenuating chronic inflammation in its target organs. Adiponectin also exerts the salutary effects on vascular disorders by directly acting on vascular component cells including endothelial cells, smooth muscle cells and macrophages. This review will focus on the role of adiponectin in control of inflammatory responses and atherogenic processes.  相似文献   

14.
Inappropriate or excessive pulmonary inflammation can contribute to chronic lung diseases. In health, the resolution of inflammation is an active process that terminates inflammatory responses. The recent identification of endogenous lipid-derived mediators of resolution has provided a window to explore the pathobiology of inflammatory disease and structural templates for the design of novel pro-resolving therapeutics. Resolvins (resolution-phase interaction products) are a family of pro-resolving mediators that are enzymatically generated from essential omega-3 polyunsaturated fatty acids. Two molecular series of resolvins have been characterised, namely E- and D-series resolvins which possess distinct structural, biochemical and pharmacological properties. Acting as agonists at specific receptors (CMKLR1, BLT1, ALX/FPR2 and GPR32), resolvins can signal for potent counter-regulatory effects on leukocyte functions, including preventing uncontrolled neutrophil swarming, decreasing the generation of cytokines, chemokines and reactive oxygen species and promoting clearance of apoptotic neutrophils from inflamed tissues. Hence, resolvins provide mechanisms for cytoprotection of host tissues to the potentially detrimental effects of unresolved inflammation. This review highlights recent experimental findings in resolvin research, and the impact of these stereospecific molecules on the resolution of pulmonary inflammation and tissue catabasis.  相似文献   

15.
Mounting evidence has established a role for chronic inflammation in the development of obesity-induced insulin resistance, as genetic ablation of pro-inflammatory cytokines and chemokines elevated in obesity improves insulin signaling in vitro and in vivo. Recent evidence further highlights interleukin (IL)-12 family cytokines as prospective inflammatory mediators linking obesity to insulin resistance. In this study, we present empirical evidence demonstrating that IL-12 family related genes are expressed and regulated in insulin-responsive tissues under conditions of obesity. First, we report that respective mRNAs for each of the known members of this cytokine family are expressed within detectable ranges in WAT, skeletal muscle, liver and heart. Second, we show that these cytokines and their cognate receptors are divergently regulated with genetic obesity in a tissue-specific manner. Third, we demonstrate that select IL-12 family cytokines are regulated in WAT in a manner that is dependent on the developmental stage of obesity as well as the inflammatory progression associated with obesity. Fourth, we report that respective mRNAs for IL-12 cytokines and receptors are also expressed and divergently regulated in cultured adipocytes under conditions of inflammatory stress. To our knowledge, this report is the first study to systemically evaluated mRNA expression of all IL-12 family cytokines and receptors in any tissue under conditions of obesity highlighting select family members as potential mediators linking excess nutrient intake to metabolic diseases such as insulin resistance, diabetes and heart disease.  相似文献   

16.
17.
Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

18.
Inflammation in central nervous system injury   总被引:16,自引:0,他引:16  
Inflammation is a key component of host defence responses to peripheral inflammation and injury, but it is now also recognized as a major contributor to diverse, acute and chronic central nervous system (CNS) disorders. Expression of inflammatory mediators including complement, adhesion molecules, cyclooxygenase enzymes and their products and cytokines is increased in experimental and clinical neurodegenerative disease, and intervention studies in experimental animals suggest that several of these factors contribute directly to neuronal injury. Most notably, specific cytokines, such as interleukin-1 (IL-1), have been implicated heavily in acute neurodegeneration, such as stroke and head injury. In spite of their diverse presentation, common inflammatory mechanisms may contribute to many neurodegenerative disorders and in some (e.g. multiple sclerosis) inflammatory modulators are in clinical use. Inflammation may have beneficial as well as detrimental actions in the CNS, particularly in repair and recovery. Nevertheless, several anti-inflammatory targets have been identified as putative treatments for CNS disorders, initially in acute conditions, but which may also be appropriate to chronic neurodegenerative conditions.  相似文献   

19.
The IL-1 family comprises two anti-inflammatory cytokines (IL-37, IL-38), two receptor antagonists (IL-1ra, IL-36ra), and seven ligand agonists (IL-1α, IL-1β, IL-33, IL-36α, IL-36β, IL-36γ). The members of this family exert pleiotropic effects on intercellular signaling, leading to pro- or anti-inflammatory responses. They initiate potent inflammatory and immune responses by binding to specific receptors in the IL-1 receptor family, and their activities are repressed by naturally occurring inhibitors. Various immune cells produce and are regulated by these crucial molecules, which appear to be involved in the pathogenesis of diverse diseases including cancer as well as inflammatory and autoimmune disorders. Recent decades have seen substantial progress in understanding how the IL-1 family contributes to the development of sepsis. In this review, we will briefly introduce the IL-1 family and discuss its critical role in inflammatory and immune responses. The potential significance of IL-1 members in sepsis will also be explored, together with the clinical implications for treating this dangerous condition.  相似文献   

20.
Two of the main challenges that multicellular organisms faced during evolution were to cope with invading microorganisms and eliminate and replace dying cells. Our innate immune system evolved to handle both tasks. Key aspects of innate immunity are the detection of invaders or tissue injury and the activation of inflammation that alarms the system through the action of cytokine and chemokine cascades. While inflammation is essential for host resistance to infections, it is detrimental when produced chronically or in excess and is linked to various diseases, most notably auto-immune diseases, auto-inflammatory disorders, cancer and septic shock. Essential regulators of inflammation are enzymes termed “the inflammatory caspases”. They are activated by cellular sensors of danger signals, the inflammasomes, and subsequently convert pro-inflammatory cytokines into their mature active forms. In addition, they regulate non-conventional protein secretion of alarmins and cytokines, glycolysis and lipid biogenesis, and the execution of an inflammatory form of cell death termed “pyroptosis”. By acting as key regulators of inflammation, energy metabolism and cell death, inflammatory caspases and inflammasomes exert profound influences on innate immunity and infectious and non-infectious inflammatory diseases. Christian R. McIntire and Garabet Yeretssian have contributed equally to this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号