首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inflammation: gearing the journey to cancer   总被引:5,自引:0,他引:5  
Kundu JK  Surh YJ 《Mutation research》2008,659(1-2):15-30
  相似文献   

2.
《Journal of molecular biology》2014,426(23):3830-3837
Insects provide experimentally tractable and cost-effective model systems to investigate the molecular basis of animal–bacterial interactions. Recent research is revealing the central role of the insect innate immune system, especially anti-microbial peptides and reactive oxygen species, in regulating the abundance and composition of the microbiota in various insects, including Drosophila and the mosquitoes Aedes and Anopheles. Interactions between the immune system and microbiota are, however, bidirectional with evidence that members of the resident microbiota can promote immune function, conferring resistance to pathogens and parasites by both activation of immune effectors and production of toxins. Antagonistic and mutualistic interactions among bacteria have also been implicated as determinants of the microbiota composition, including exclusion of pathogens, but the molecular mechanisms are largely unknown. Some bacteria are crucial for insect nutrition, through provisioning of specific nutrients (e.g., B vitamins, essential amino acids) and modulation of the insect nutritional sensing and signaling pathways (e.g., insulin signaling) that regulate nutrient allocation, especially to lipid and other energy reserves. A key challenge for future research is to identify the molecular interaction between specific bacterial effectors and animal receptors, as well as to determine how these interactions translate into microbiota-dependent signaling, metabolism, and immune function in the host.  相似文献   

3.
More than 15% of the global cancer burden is attributable to infectious agents. Pathogens that cause persistent infections are strongly associated with cancer, inflammation being a major component of the chronic infections as revealed by basic, clinical and epidemiological studies.Persistent infection and viral oncoproteins induce specific cellular pathways modifications that promote tumorigenesis. Deregulated and continuous immune response leads to severe tissue and systemic damage, impaired tumor surveillance and consequent carcinogenesis promotion by selecting for metastatic and therapeutically resistant tumor phenotypes.In this review, the role of inflammatory microenvironment in the HPV-induced carcinogenesis is addressed, with a specific focus on the involvement of the immune molecules and microRNAs as well as their delivery through the microvesicle cargo.  相似文献   

4.
Helicobacter Pylori is a gram negative rod shaped microaerophilic bacterium that colonizes the stomach of approximately half the world's population. Infection with c may cause chronic gastritis which via a quite well described process known as Correas cascade can progress through sequential development of atrophic gastritis, intestinal metaplasia and dysplasia to gastric cancer. H. pylori is currently the only bacterium that is classified as a class 1 carcinogen by the WHO, although the exact mechanisms by which this bacterium contributes to gastric carcinogenesis are still poorly understood. Only a minority of H. pylori-infected patients will eventually develop gastric cancer, suggesting that host factors may be important in determining the outcome of H. pylori infection. This is supported by a growing body of evidence suggesting that the host genetic background contributes to risk of H. pylori infection and gastric carcinogenesis. In particular single nucleotide polymorphisms in genes that influence bacterial handling via pattern recognition receptors appear to be involved, further strengthening the link between host risk factors, H. pylori incidence and cancer. Many of these genes influence cellular pathways leading to inflammatory signaling, inflammasome formation and autophagy. In this review we summarize known carcinogenic effects of H. pylori, and discuss recent findings that implicate host genetic pattern recognition pathways in the development of gastric cancer and their relation with H. pylori.  相似文献   

5.
Cancer is a prominent cause of morbidity and mortality worldwide, in spite of advances in therapeutic interventions and supportive care. In 2018 alone, there were 18·1 million new cancer cases and 9·6 million deaths indicating the need for novel anticancer agents. Plant-based products have often been linked with protective effects against communicable and non-communicable diseases. Recently, we have shown that animals such as crocodiles thrive in polluted environments and are often exposed to carcinogenic agents, but still benefit from prolonged lifespan. The protective mechanisms shielding them from cancer could be attributed to the immune system, and/or it is possible that their gut microbiota produce anticancer molecules. In support, several lines of evidence suggest that gut microbiota plays a critical role in the physiology of its host. Here, we reviewed the available literature to assess whether the gut microbiota of animals thriving in polluted environment possess anticancer molecules.  相似文献   

6.
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.  相似文献   

7.
The tumor immune microenvironment (TIME) is the cellular environment in which tumors exist. This includes: surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, lymphocytes, signaling molecules, immune checkpoint proteins and the extracellular matrix (ECM). The TIME plays a critical role in cancer progression and regulation. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells. The molecules and cells in the TIME influence disease outcome by altering the balance of suppressive versus cytotoxic responses in the vicinity of the tumor. Having a better understanding of the tumor immune microenvironment will pave the way for identifying new targets for immunotherapies that promote cancer elimination.  相似文献   

8.
9.
10.
Under many circumstances, the host constituents that are found in the tumor microenvironment support a malignancy network and provide the cancer cells with advantages in proliferation, invasiveness and metastasis establishment at remote organs. It is known that Toll like receptors (TLRs) are expressed not only on immune cells but also on cancer cells and it has suggested a deleterious role for TLR3 in inflammatory disease. Hypothesizing that altered IFNγ signaling may be a key mechanism of immune dysfunction common to cancer as well CXCR4 is overexpressed among breast cancer patients, the mRNA expression of TLR3, CXCR4 and IFNγ in breast cancer tumor tissues was investigated. No statistically significant differences in the expression of CXCR4 mRNA, IFNγ and TLR3 between healthy and tumor tissues was observed, however, it was verified a positive correlation between mRNA relative expression of TLR3 and CXCR4 (p?<?0.001), and mRNA relative expression of TLR3 was significantly increased in breast cancer tumor tissue when compared to healthy mammary gland tissue among patients expressing high IFNγ (p?=?0.001). Since the tumor microenvironment plays important roles in cancer initiation, growth, progression, invasion and metastasis, it is possible to propose that an overexpression of IFNγ mRNA due to the pro-inflammatory microenvironment can lead to an up-regulation of CXCR4 mRNA and consequently to an increased TLR3 mRNA expression even among nodal negative patients. In the future, a comprehensive study of TLR3, CXCR4 and IFNγ axis in primary breast tumors and corresponding healthy tissues will be crucial to further understanding of the cancer network.  相似文献   

11.
We reviewed the mechanism of oxidative DNA damage with reference to metal carcinogenesis and metal-mediated chemical carcinogenesis. On the basis of the finding that chromium (VI) induced oxidative DNA damage in the presence of hydrogen peroxide (H2O2), we proposed the hypothesis that endogenous reactive oxygen species play a role in metal carcinogenesis. Since then, we have reported that various metal compounds, such as cobalt, nickel, and ferric nitrilotriacetate, directly cause site-specific DNA damage in the presence of H2O2. We also found that carcinogenic metals could cause DNA damage through indirect mechanisms. Certain nickel compounds induced oxidative DNA damage in rat lungs through inflammation. Endogenous metals, copper and iron, catalyzed ROS generation from various organic carcinogens, resulting in oxidative DNA damage. Polynuclear compounds, such as 4-aminobiphenyl and heterocyclic amines, appear to induce cancer mainly through DNA adduct formation, although their N-hydroxy and nitroso metabolites can also cause oxidative DNA damage. On the other hand, mononuclear compounds, such as benzene metabolites, caffeic acid, and o-toluidine, should express their carcionogenicity through oxidative DNA damage. Metabolites of certain carcinogens efficiently caused oxidative DNA damage by forming NADH-dependent redox cycles. These findings suggest that metal-mediated oxidative DNA damage plays important roles in chemical carcinogenesis.  相似文献   

12.
Tumor necrosis factor-α-induced protein 8 (TNFAIP8 or TIPE) is a member of the TNFAIP8 family. While TIPE was broadly considered to be pro-cancerous, its precise roles in carcinogenesis especially those of the intestinal tract are not clear. Here, we show that genetic deletion of TIPE in mice exacerbated chemical-induced colitis and colitis-associated colon cancer. Loss of TIPE exacerbated inflammatory responses and inflammation-associated dysbiosis, leading to the activation of NF-κB and STAT3, and it also accelerated dysplasia, DNA damage and proliferation of intestinal epithelial cells. We further show that colon microbiota were essential for increased tumor growth and progression in Tipe−/− mice. The tumor suppressive function of TIPE originated primarily from the non-hematopoietic compartment. Importantly, TIPE was downregulated in human colorectal cancers, and patients with low levels of Tipe mRNA were associated with reduced survival. These results indicate that TIPE serves as an important modulator of colitis and colitis-associated colon cancer.Subject terms: Cancer microenvironment, Chronic inflammation  相似文献   

13.
Abstract

Inflammation is thought to be one of the major contributors to carcinogenesis. Accumulated studies in this field revealed that free radicals produced by inflammatory cells not only cause direct damage to DNA but also exert indirect effects such as de-regulation of cell proliferation and apoptosis, stimulation of angiogenesis, and modification of gene/protein expressions and protein activities, all of which are a critical step toward carcinogenesis. Free radicals have also been reported to act as both initiator and promoter of carcinogenic process. Recent evidence shows that free radicals convert benign tumors to more malignant ones (i.e. tumor progression) leading to the final stage of carcinogenesis. This article reviews the current findings linking inflammation and cancer, and shed light on inflammatory cell-derived free radicals as major endogenous reactive substances for tumor development and progression.  相似文献   

14.
Inflammation is thought to be one of the major contributors to carcinogenesis. Accumulated studies in this field revealed that free radicals produced by inflammatory cells not only cause direct damage to DNA but also exert indirect effects such as de-regulation of cell proliferation and apoptosis, stimulation of angiogenesis, and modification of gene/protein expressions and protein activities, all of which are a critical step toward carcinogenesis. Free radicals have also been reported to act as both initiator and promoter of carcinogenic process. Recent evidence shows that free radicals convert benign tumors to more malignant ones (i.e. tumor progression) leading to the final stage of carcinogenesis. This article reviews the current findings linking inflammation and cancer, and shed light on inflammatory cell-derived free radicals as major endogenous reactive substances for tumor development and progression.  相似文献   

15.
Airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by excessive inflammation and are exacerbated by nontypeable Haemophilus influenzae (NTHi). Airway epithelial cells mount the initial innate immune responses to invading pathogens and thus modulate inflammation. While inflammation is necessary to eliminate a pathogen, excessive inflammation can cause damage to the host tissue. Therefore, the inflammatory response must be tightly regulated and deciphering the signaling pathways involved in this response will enhance our understanding of the regulation of the host inflammatory response. NTHi binds to TLR2 and signal propagation requires the adaptor molecule myeloid differentiation factor 88 (MyD88). An alternative spliced form of MyD88 is called MyD88 short (MyD88s) and has been identified in macrophages and embryonic cell lines as a negative regulator of inflammation. However, the role of MyD88s in NTHi-induced inflammation in airway epithelial cells remains unknown. Here we show that NTHi induces MyD88s expression and MyD88s is a negative regulator of inflammation in airway epithelial cells. We further demonstrate that MyD88s is positively regulated by IKKβ and CREB and negatively regulated by ERK1/2 signaling pathways. Taken together these data indicate that airway inflammation is controlled in a negative feedback manner involving MyD88s and suggest that airway epithelial cells are essential to maintain immune homeostasis.  相似文献   

16.
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.  相似文献   

17.
Emerging evidence suggests that host-microbe interaction in the cervicovaginal microenvironment contributes to cervical carcinogenesis, yet dissecting these complex interactions is challenging. Herein, we performed an integrated analysis of multiple “omics” datasets to develop predictive models of the cervicovaginal microenvironment and identify characteristic features of vaginal microbiome, genital inflammation and disease status. Microbiomes, vaginal pH, immunoproteomes and metabolomes were measured in cervicovaginal specimens collected from a cohort (n = 72) of Arizonan women with or without cervical neoplasm. Multi-omics integration methods, including neural networks (mmvec) and Random Forest supervised learning, were utilized to explore potential interactions and develop predictive models. Our integrated analyses revealed that immune and cancer biomarker concentrations were reliably predicted by Random Forest regressors trained on microbial and metabolic features, suggesting close correspondence between the vaginal microbiome, metabolome, and genital inflammation involved in cervical carcinogenesis. Furthermore, we show that features of the microbiome and host microenvironment, including metabolites, microbial taxa, and immune biomarkers are predictive of genital inflammation status, but only weakly to moderately predictive of cervical neoplastic disease status. Different feature classes were important for prediction of different phenotypes. Lipids (e.g. sphingolipids and long-chain unsaturated fatty acids) were strong predictors of genital inflammation, whereas predictions of vaginal microbiota and vaginal pH relied mostly on alterations in amino acid metabolism. Finally, we identified key immune biomarkers associated with the vaginal microbiota composition and vaginal pH (MIF), as well as genital inflammation (IL-6, IL-10, MIP-1α).  相似文献   

18.
19.
Respiratory infections cause significant morbidity and mortality worldwide. Although an immune response is required to eliminate respiratory pathogens, if unchecked, it can damage surrounding tissues and block primary lung function. Based on our knowledge of immune T-cell activation, there are several pathways to which immune intervention could be applied. However, relatively few interventions target only those immune cells that are responding to antigens. OX40 and 4-1BB are members of the tumour necrosis factor receptor family and are expressed on the surface of T cells in several inflammatory conditions. Recently, the inhibition of OX40 has proved beneficial during influenza virus infection. This review highlights the recent advances in the manipulation of such molecules and how they have been applied to inflammatory conditions that are caused by viruses in the lung.  相似文献   

20.
Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号