首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Zhang Y  Mao F  Lu Y  Wu W  Zhang L  Zhao Y 《Cell research》2011,21(10):1436-1451
The Hedgehog (Hh) family of secreted proteins is essential for development in both vertebrates and invertebrates. As one of main morphogens during metazoan development, the graded Hh signal is transduced across the plasma membrane by Smoothened (Smo) through the differential phosphorylation of its cytoplasmic tail, leading to pathway activation and the differential expression of target genes. However, how Smo transduces the graded Hh signal via the Costal2 (Cos2)/Fused (Fu) complex remains poorly understood. Here we present a model of the cell response to a Hh gradient by translating Smo phosphorylation information to Fu dimerization and Cubitus interruptus (Ci) nuclear localization information. Our findings suggest that the phosphorylated C-terminus of Smo recruits the Cos2/Fu complex to the membrane through the interaction between Smo and Cos2, which further induces Fu dimerization. Dimerized Fu is phosphorylated and transduces the Hh signal by phosphorylating Cos2 and Suppressor of Fu (Su(fu)). We further show that this process promotes the dissociation of the full-length Ci (Ci155) and Cos2 or Su(fu), and results in the translocation of Ci155 into the nucleus, activating the expression of target genes.  相似文献   

5.
6.
7.
8.
9.
Hedgehog (Hh) proteins are secreted molecules that play an essential role in development and tumorigenesis. In Drosophila cultured cells, phosphorylation of the kinesin-like Costal2 (Cos2) protein at Ser572 is triggered by the kinase fused (Fu) upon Hh pathway activation. Here, we validate the first phospho-antibody for one of the Hh pathway components, Cos2, as a universal in situ readout of Hh signal transduction. For the first time, this tool allows the visualisation of a gradient of signalling activity and therefore the range of the activating Hh ligand in different tissues. We also show that, in vivo, Fu kinase is activated by and necessary to transduce all levels of intracellular Hh signalling. Our study fills a gap in the understanding of the Hh pathway by showing that the molecular cascade leading to Cos2 phosphorylation is conserved in all cells activated by Hh. Therefore, we propose that the extracellular Hh information is conveyed to an intracellular signal through graded Fu kinase activity.  相似文献   

10.
The protein kinase Fused (Fu) is an integral member of the Hedgehog (Hh) signaling pathway. Although genetic studies demonstrate that Fu is required for the regulation of the Hh pathway, the mechanistic role that it plays remains largely unknown. Given our difficulty in developing an in vitro kinase assay for Fu, we reasoned that the catalytic activity of Fu might be highly regulated. Several mechanisms are known to regulate protein kinases, including self-association in either an intra- or an intermolecular fashion. Here, we provide evidence that Hh regulates Fu through intramolecular association between its kinase domain (DeltaFu) and its carboxyl-terminal domain (Fu-tail). We show that DeltaFu and Fu-tail can interact in trans, with or without the kinesin-related protein Costal 2 (Cos2). However, since the majority of Fu is found associated with Cos2 in vivo, we hypothesized that Fu-tail, which binds Cos2 directly, would be able to tether DeltaFu to Cos2. We demonstrate that DeltaFu colocalizes with Cos2 in the presence of Fu-tail and that this colocalization occurs on a subset of membrane vesicles previously characterized to be important for Hh signal transduction. Additionally, expression of Fu-tail in fu mutant flies that normally express only the kinase domain rescues the fu wing phenotype. Therefore, reestablishing the association between these two domains of Fu in trans is sufficient to restore Hh signal transduction in vivo. In such a manner we validate our hypothesis, demonstrating that Fu self-associates and is functional in an Hh-dependent manner. Our results here enhance our understanding of one of the least characterized, yet critical, components of Hh signal transduction.  相似文献   

11.
12.
13.
14.
The secreted protein hedgehog (Hh) plays a critical role in the developmental patterning of multiple tissues. In Drosophila melanogaster, a cytosolic multiprotein signaling complex appears necessary for Hh signaling. Genes that encode components of this Hh signaling complex (HSC) were originally identified and characterized based on their genetic interactions with hh, as well as with each other. It is only in recent years that the mechanistic functions of these components have begun to be unraveled. Here, we have investigated the relationship between two components of the HSC, the serine/threonine protein kinase Fused (Fu) and the kinesin-related protein Costal2 (Cos2). We have reconstituted a Fu/Cos2 complex in vitro and shown that Fu is able to directly associate with Cos2, forming a complex whose molecular size is similar to a previously described complex found in Drosophila cell extracts. We have also determined that the carboxyl-terminal domain of Fu is necessary and sufficient for the direct binding of Fu to Cos2. To validate the physiological relevance of this interaction, we overexpressed the carboxyl-terminal domain of Fu in wild-type flies. These flies exhibit a phenotype similar to that seen in fu mutants and consistent with an hh loss-of-function phenotype. We conclude that the carboxyl-terminal domain of Fu can function in a dominant negative manner, by preventing endogenous Fu from binding to Cos2. Thus, we provide the first evidence that Hh signaling can be compromised by targeting the HSC for disruption.  相似文献   

15.
The Hedgehog (Hh) signaling pathway plays important roles in the tumorigenesis of multiple cancers and is a key target for drug discovery. In a screen of natural products extracted from Chinese herbs, we identified eight ent-Kaurane diterpenoids and two triterpene dilactones as novel Hh pathway antagonists. Epistatic analyses suggest that these compounds likely act at the level or downstream of Smoothened (Smo) and upstream of Suppressor of Fused (Sufu). The ent-Kauranoid-treated cells showed elongated cilia, suppressed Smo trafficking to cilia, and mitotic defects, while the triterpene dilactones had no effect on the cilia and ciliary Smo. These ent-Kaurane diterpenoids provide new prototypes of Hh inhibitors, and are valuable probes for deciphering the mechanisms of Smo ciliary transport and ciliogenesis.  相似文献   

16.
Casein kinase 2 (CK2) is a typical serine/threonine kinase consisting of α and β subunits and has been implicated in many cellular and developmental processes. In this study, we demonstrate that CK2 is a positive regulator of the Hedgehog (Hh) signal transduction pathway. We found that inactivation of CK2 by CK2β RNAi enhances the loss-of-Hh wing phenotype induced by a dominant negative form of Smoothened (Smo). CK2β RNAi attenuates Hh-induced Smo accumulation and down-regulates Hh target gene expression, whereas increasing CK2 activity by coexpressing CK2α and CK2β increases Smo accumulation and induces ectopic Hh target gene expression. We identified the serine residues in Smo that can be phosphorylated by CK2 in vitro. Mutating these serine residues attenuates the ability of Smo to transduce high level Hh signaling activity in vivo. Furthermore, we found that CK2 plays an additional positive role downstream of Smo by regulating the stability of full-length Cubitus interruptus (Ci). CK2β RNAi promotes Ci degradation whereas coexpressing CK2α and CK2β increases the half-life of Ci. We showed that CK2 prevents Ci ubiquitination and degradation by the proteasome. Thus, CK2 promotes Hh signaling activity by regulating multiple pathway components.  相似文献   

17.
18.
19.
The Hedgehog (Hh) signaling pathway plays a conserved and essential role in regulating development and homeostasis of numerous tissues. Cytoplasmic signaling is initiated by Smoothened (Smo), a G-protein-coupled receptor (GPCR) family member, whose levels and activity are regulated by the Hh receptor Patched (Ptc). In response to Hh binding to Ptc, Ptc-mediated repression of Smo is relieved, leading to Smo activation, surface accumulation, and downstream signaling. We find that downregulation of Drosophila Smo protein in Hh-responding imaginal disc cells is dependent on the activity of G-protein-coupled receptor kinase 2 (Gprk2). By analyzing gain- and null loss-of-function phenotypes, we provide evidence that Gprk2 promotes Smo internalization subsequent to its activation, most likely by direct phosphorylation. Ptc-dependent regulation of Smo accumulation is normal in gprk2 mutants, indicating that Gprk2 and Ptc downregulate Smo by different mechanisms. Finally, we show that both Drosophila G-protein-coupled receptor kinase orthologues, Gprk1 and Gprk2, act in a partially redundant manner to promote Hh signaling. Our results suggest that Smo is regulated by distinct Ptc-dependent and Gprk2-dependent trafficking mechanisms in vivo, analogous to constitutive and activity-dependent regulation of GPCRs. G-protein-coupled receptor kinase activity is also important for efficient downstream signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号