首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cellular signalling》2014,26(3):648-656
Syncytin-1 is a human endogenous retroviral envelope gene (HERVW1) product specifically expressed in placental trophoblasts. By mediating the formation of syncytiotrophoblasts through cell–cell fusion, syncytin-1 plays a critical role for the placental barrier, endocrine and exchange functions. During pregnancy, syncytin-1 expression is dynamically regulated by various pathophysiological factors and pathways. This review summarizes and examines published data on epigenetic and non-epigenetic regulation of syncytin-1 gene expression, with a focus on the changes of syncytin-1 DNA methylation and expression in placental trophoblasts under preeclamptic and hypoxic conditions. The functions of syncytiotrophoblasts, the fusogenic and non-fusogenic activities of syncytin-1, and aberrant activation of syncytin-1 expression in cancer cells are also discussed. New findings on the epigenetic regulation of syncytin-1 in placentas from monozygotic/dichorionic discordant twins are analyzed. The close correlation among changes of DNMTs expression, syncytin-1 gene methylation, and syncytin-1 mRNA levels, in placentas associated with discordant fetal growth indicated a dynamic nature of syncytin-1 regulation.  相似文献   

2.
《Cellular signalling》2014,26(5):959-967
Expression of syncytin-1, or the human endogenous retroviral family W member 1 (HERVWE1) in human placental trophoblasts is regulated by DNA methylation. Increased DNA methylation and decreased expression of syncytin-1 have been observed in preeclamptic placentas. The syncytin-1-mediated fusogenic as well as non-fusogenic activities, e.g., cell cycle promotion, anti-apoptosis, and immune suppression, are implicated in the pathogenic changes in preeclamptic placentas. It is noteworthy that in a close vicinity to syncytin-1 there are two genes, peroxisome biogenesis factor 1 (PEX1) and GATA zinc finger domain containing 1 (GATAD1), as well as multiple CpG islands around these genes. In this study we determined if these adjacent genes might, like syncytin-1, subject to epigenetic regulation in preeclamptic placentas. Data from quantitative real-time PCR and Western blotting indicated that while PEX1 expression remained stable, GATAD1 expression was significantly decreased in the third-trimester placentas associated with preeclampsia than those associated with normal pregnancy. Immunohistochemistry detected high GATAD1 expression in trophoblast linage, and confirmed its reduced levels in preeclamptic placentas. However, COBRA and bisulfate sequencing detected decreased DNA methylation in levels in the 3 [prime] region of GATAD1 gene in preeclamptic placentas. The positive correlation between 3 [prime] methylation and GATAD1 expression was confirmed by treatment of choriocarcinoma JAR cells with DNMT inhibitor. These data pointed to a potential role of GATAD1 for the syncytium deficiency often associated with preeclamptic placentas. The sharp contrast of the methylation alterations for the closely positioned GATAD1 and HERVWE1 may provide a useful model for studying the accurate control of DNA methylation as well as their positive and negative impact on gene expression in placental trophoblasts.  相似文献   

3.
Trophoblasts, the fetal cells that line the villous placenta and separate maternal blood from fetal tissue, express both Fas antigen and the tumor necrosis factor (TNF) receptor p55 (TNFRp55), two members of the TNF receptor family that contain a cytoplasmic "death domain" that mediates apoptotic signals. We show that Fas mRNA expressed by cultured villous cytotrophoblasts isolated from term placentas encodes transmembrane sequences and that the protein is full-length (approximately 45 kDa), suggesting that the product is an active plasma membrane-anchored receptor. Its location on the cell surface was confirmed by cellular ELISA analysis of live cells. Although cytotrophoblast apoptosis was induced by TNFalpha, and both anti-Fas antibody (CH11) and FasL-expressing T lymphocyte hybridoma (activated A1.1) cells induced HeLa cell apoptosis, neither CH11 antibody nor activated A1.1 cells stimulated apoptosis in term or first-trimester cytotrophoblasts or in term syncytiotrophoblasts. We conclude that Fas- but not TNFRp55-mediated apoptosis is blocked in primary villous trophoblasts. These data suggest that the Fas response is specifically inactivated by unknown mechanisms to avoid autocrine or paracrine killing by Fas ligand constitutively expressed on neighboring cyto- or syncytiotrophoblasts.  相似文献   

4.
The main disorders of human pregnancy are rooted in defective placentation. Normal placental development depends on proliferation, differentiation, and fusion of cytotrophoblasts to form and maintain an overlying syncytiotrophoblast. There is indirect evidence that the insulin-like growth factors (IGFs), which are aberrant in pregnancy disorders, are involved in regulating trophoblast turnover, but the processes that control human placental growth are poorly understood. Using an explant model of human first-trimester placental villus in which the spatial and ontological relationships between cell populations are maintained, we demonstrate that cytotrophoblast proliferation is enhanced by IGF-I/IGF-II and that both factors can rescue cytotrophoblast from apoptosis. Baseline cytotrophoblast proliferation ceases in the absence of syncytiotrophoblast, although denuded cytotrophoblasts can proliferate when exposed to IGF and the rate of cytotrophoblast differentiation/fusion and, consequently, syncytial regeneration, increases. Use of signaling inhibitors suggests that IGFs mediate their effect on cytotrophoblast proliferation/syncytial formation through the MAPK pathway, whereas effects on survival are regulated by the phosphoinositide 3-kinase pathway. These results show that directional contact between cytotrophoblast and syncytium is important in regulating the relative amounts of the two cell populations. However, IGFs can exert an exogenous regulatory influence on placental growth/development, suggesting that manipulation of the placental IGF axis may offer a potential therapeutic route to the correction of inadequate placental growth.  相似文献   

5.
6.
GLUT1 is an isoform of facilitated-diffusion glucose transporters and has been shown to be abundant in cells of blood-tissue barriers. Using antibodies against GLUT1, we investigated the immunohistochemical localization of GLUT1 in the rat placenta. Rat placenta is of the hemotrichorial type. Three cell layers (from the maternal blood side inward) cytotrophoblast and syncytiotrophoblasts I and II, lie between the maternal and fetal bloodstreams. GLUT1 was abundant along the invaginating plasma membrane facing the cytotrophoblast and the syncytiotrophoblast I. Also, the infolded basal plasma membrane of the syncytiotrophoblast II was rich in GLUT1. Apposing plasma membranes of syncytiotrophoblasts I and II, however, had only a small amount of GLUT1. Numerous gap junctions were seen between syncytiotrophoblasts I and II. Taking into account the localization of GLUT1 and the gap junctions, we suggest a possible major transport route of glucose across the placental barrier, as follows: glucose in the maternal blood passes freely through pores of the cytotrophoblast. Glucose is then transported into the cytoplasm of the syncytiotrophoblast I via GLUT1. Glucose enters the syncytiotrophoblast II throught the gap junctions. Finally glucose leaves the syncytiotrophoblast II via GLUT1 and enters the fetal blood through pores of the endothelial cells.  相似文献   

7.
We recently demonstrated that the product of the HERV-W env gene, a retroviral envelope protein also dubbed syncytin, is a highly fusogenic membrane glycoprotein inducing the formation of syncytia on interaction with the type D mammalian retrovirus receptor. In addition, the detection of HERV-W Env protein (Env-W) expression in placental tissue sections led us to propose a role for this fusogenic glycoprotein in placenta formation. To evaluate this hypothesis, we analyzed the involvement of Env-W in the differentiation of primary cultures of human villous cytotrophoblasts that spontaneously differentiate by cell fusion into syncytiotrophoblasts in vitro. First, we observed that HERV-W env mRNA and glycoprotein expression are colinear with primary cytotrophoblast differentiation and with expression of human chorionic gonadotropin (hCG), a marker of syncytiotrophoblast formation. Second, we observed that in vitro stimulation of trophoblast cell fusion and differentiation by cyclic AMP is also associated with a concomitant increase in HERV-W env and hCG mRNA and protein expression. Finally, by using specific antisense oligonucleotides, we demonstrated that inhibition of Env-W protein expression leads to a decrease of trophoblast fusion and differentiation, with the secretion of hCG in culture medium of antisense oligonucleotide-treated cells being decreased by fivefold. Taken together, these results strongly support a direct role for Env-W in human trophoblast cell fusion and differentiation.  相似文献   

8.
Human cytomegalovirus (CMV) is the leading cause of prenatal viral infection. Affected infants may suffer intrauterine growth retardation and serious neurologic impairment. Analysis of spontaneously aborted conceptuses shows that CMV infects the placenta before the embryo or fetus. In the human hemochorial placenta, maternal blood directly contacts syncytiotrophoblasts that cover chorionic villi and cytotrophoblasts that invade uterine vessels, suggesting possible routes for CMV transmission. To test this hypothesis, we exposed first-trimester chorionic villi and isolated cytotrophoblasts to CMV in vitro. In chorionic villi, syncytiotrophoblasts did not become infected, although clusters of underlying cytotrophoblasts expressed viral proteins. In chorionic villi that were infected with CMV in utero, syncytiotrophoblasts were often spared, whereas cytotrophoblasts and other cells of the villous core expressed viral proteins. Isolated cytotrophoblasts were also permissive for CMV replication in vitro; significantly, infection subsequently impaired the cytotrophoblasts' ability to differentiate and invade. These results suggest two possible routes of CMV transmission to the fetus: (i) across syncytiotrophoblasts with subsequent infection of the underlying cytotrophoblasts and (ii) via invasive cytotrophoblasts within the uterine wall. Furthermore, the observation that CMV infection impairs critical aspects of cytotrophoblast function offers testable hypotheses for explaining the deleterious effects of this virus on pregnancy outcome.  相似文献   

9.
ABSTRACT

The placental syncytiotrophoblast, which is formed by the fusion of cytotrophoblast cells, is indispensable for the establishment and maintenance of normal pregnancy. The human endogenous retrovirus envelope glycoprotein syncytin-2 is the most important player in mediating trophoblast cell-cell fusion as a fusogen. We constructed expression plasmids of wild-type and 21 single-amino-acid substitution mutants of syncytin-2, including 10 N-glycosylation sites individually silenced by mutagenizing N to Q, 1 naturally occurring single-nucleotide polymorphism (SNP) N118S that introduced an N-glycosylation site, and another 10 non-synonymous SNPs located within important functional domains. We observed that syncytin-2 was highly fusogenic and that the mutants had different capacities in merging 293T cells. Of the 21 mutants, N133Q, N312Q, N443Q, C46R (in the CXXC motif) and R417H (in the heptad repeat region and immunosuppressive domain) lost their fusogenicity, whereas N332Q, N118S, T367M (in the fusion peptide), V483I (in the transmembrane domain) and T522M (in the cytoplasmic domain) enhanced the fusogenic activity. We also proved that N133, N146, N177, N220, N241, N247, N312, N332 and N443 were all glycosylated in 293T cells. A co-immunoprecipitation assay showed compromised interaction between mutants N443Q, C46R, T367M, R417H and the receptor MFSD2A, whereas N118S was associated with more receptors. We also sequenced the coding sequence of syncytin-2 in 125 severe pre-eclamptic patients and 272 normal pregnant Chinese women. Surprisingly, only 1 non-synonymous SNP T522M was found and the frequencies of heterozygous carriers were not significantly different. Taken together, our results suggest that N-glycans at residues 133, 312, 332 and 443 of syncytin-2 are required for optimal fusion induction, and that SNPs C46R, N118S, T367M, R417H, V483I and T522M can alter the fusogenic function of syncytin-2.  相似文献   

10.
We examined the morphological features of the mitochondria and endoplasmic reticula of chorion laeve cytotrophoblasts from term human fetal membranes, and compared them with those of syncytiotrophoblasts and cytotrophoblasts from human placental villi. Ultrastructural enzyme histochemistry of cytochrome c oxidase and glucose-6-phosphatase were used as cytochemical markers for these intracellular organelles. Chorion laeve cytotrophoblasts possessed abundant endoplasmic reticula, and small mitochondria with a few cristae, which were characteristic of villous syncytiotrophoblasts rather than villous cytotrophoblasts. As for these organellar structures, statistical analysis confirmed similarities between chorion laeve cytotrophoblasts and villous syncytiotrophoblasts, but significant differences between laeve cytotrophoblasts and villous cytotrophoblasts. Though these two cytotrophoblasts originated from one common cell in early placental development, they exhibited quite different organellar morphology during placental/chorioamniotic differentiation. Considering previous data, we concluded that chorion laeve cytotrophoblasts were metabolically active cells, similar to villous syncytiotrophoblasts, performing many functions in fetal membrane physiology.  相似文献   

11.
12.
Cytomegalovirus (CMV), the major viral cause of congenital disease, infects the uterus and developing placenta and spreads to the fetus throughout gestation. Virus replicates in invasive cytotrophoblasts in the decidua, and maternal immunoglobulin G (IgG)-CMV virion complexes, which are transcytosed by the neonatal Fc receptor across syncytiotrophoblasts, infect underlying cytotrophoblasts in chorionic villi. Immunity is central to protection of the placenta-fetal unit: infection can occur when IgG has a low neutralizing titer. Here we used immunohistochemical and function-blocking methods to correlate infection in the placenta with expression of potential CMV receptors in situ and in vitro. In placental villi, syncytiotrophoblasts express the virion receptor epidermal growth factor receptor (EGFR) but lack integrin coreceptors, and virion uptake occurs without replication. Focal infection can occur when transcytosed virions reach EGFR-expressing cytotrophoblasts that selectively initiate expression of alphaV integrin. In cell columns, proximal cytotrophoblasts lack receptors and distal cells express integrins alpha1beta1 and alphaVbeta3, enabling virion attachment. In the decidua, invasive cytotrophoblasts expressing coreceptors upregulate EGFR, thereby dramatically increasing susceptibility to infection. Our findings indicate that virion interactions with cytotrophoblasts expressing receptors in the placenta (i) change as the cells differentiate and (ii) correlate with spatially distinct sites of CMV replication in maternal and fetal compartments.  相似文献   

13.
Fusion of cytotrophoblasts into the multinucleated syncytiotrophoblast layer is essential for the development of a functional placenta. The envelope protein of a human endogenous retrovirus W (HERV-W) family member, syncytin 1, has been shown to mediate placental cell fusion. Recently, the envelope protein of another HERV family member (HERV-FRD), syncytin 2, has been identified and shown to be highly expressed in the placenta. To better understand the biology of syncytin 2, in this study we first investigated syncytin 2 gene expression in normal and preeclamptic placentas and then characterized the functions of syncytin 2. The expression of syncytin 2 gene was decreased in preeclamptic placentas and could be stimulated by the cAMP stimulant forskolin. The endoprotease furin was found to be involved in the posttranslational cleavage of syncytin 1 and 2 polypeptides into surface and transmembrane subunits. In addition, proper association of the subunits of syncytins 1 and 2 is probably required for the functional integrity of each protein, because subunit swapping of syncytins 1 and 2 failed to generate fusogenic chimeras. Finally, we demonstrated that the disulfide bridge-forming CX(2)C and CX(7)C motifs found in syncytins 1 and 2 are essential for their fusogenic activities, because mutations in the CX(2)C motif not only abolished fusogenesis but also functioned as dominant-negative mutants. Our results suggest that syncytin 2 may function as a second fusogenic protein for placental cell fusion.  相似文献   

14.
Cultured human term villous cytotrophoblasts (CT) have been reported to be nonproliferating but differentiate when exposed to epidermal growth factor (EGF). Here we show that CT differentiate into chorionic gonadotropin (beta-hCG/CGB)-expressing cells when cultured with medium alone. The addition of EGF decreases CGB secretion and prolongs production for up to 13 days. EGF stimulates the phosphorylation (activation) of the signaling intermediate p38 (MAPK11/14), and blocking phosphorylation pharmacologically with either SB203580 or SB202190 strongly inhibited spontaneous and EGF-stimulated secretion of CGB. In addition, EGF-stimulated fusion of cytotrophoblasts into syncytial units was strongly inhibited by SB203580. EGF upregulated trophoblast proliferation (measured by bromodeoxyuridine uptake) and SB203580 increased this proliferation after 5 days. In agreement with these observations, EGF and SB203580 increased expression of the G1-phase-specific gene cyclin-D1 (CCND1) and SB203580 downmodulated its inhibitor p21 (CDKN1A). When added to villous explant cultures, EGF did nothing to the pattern of CGB secretion, but addition of SB203580 prevented the normal surge in secretion during syncytial regeneration over Days 3-7. These data support the hypothesis that EGF-stimulated cytotrophoblast differentiation to syncytium requires MAPK11/14 activation, and that cytotrophoblast proliferation can be stimulated in culture by EGF and enhanced by MAPK11/14 inhibition with a consequent reduction of differentiation.  相似文献   

15.
At the uterine-placental interface, fetal cytotrophoblasts invade the decidua, breach maternal blood vessels, and form heterotypic contacts with uterine microvascular endothelial cells. In early gestation, differentiating- invading cytotrophoblasts produce high levels of matrix metalloproteinase 9 (MMP-9), which degrades the extracellular matrix and increases the invasion depth. By midgestation, when invasion is complete, MMP levels are reduced. Cytotrophoblasts also produce human interleukin-10 (hIL-10), a pleiotropic cytokine that modulates immune responses, helping to protect the fetal hemiallograft from rejection. Human cytomegalovirus (CMV) is often detected at the uterine-placental interface. CMV infection impairs cytotrophoblast differentiation and invasion, altering the expression of the cell adhesion and immune molecules. Here we report that infection with a clinical CMV strain, VR1814, but not a laboratory strain, AD169, downregulates MMP activity in uterine microvascular endothelial cells and differentiating-invading cytotrophoblasts. Infected cytotrophoblasts expressed CMV IL-10 (cmvIL-10) mRNA and secreted the viral cytokine, which upregulated hIL-10. Functional analyses showed that cmvIL-10 treatment impaired migration in endothelial cell wounding assays and cytotrophoblast invasion of Matrigel in vitro. Comparable changes occurred in cells that were exposed to recombinant hIL-10 or cmvIL-10. Our results show that cmvIL-10 decreases MMP activity and dysregulates the cell-cell and/or cell-matrix interactions of infected cytotrophoblasts and endothelial cells. Reduced MMP activity early in placental development could impair cytotrophoblast remodeling of the uterine vasculature and eventually restrict fetal growth in affected pregnancies.  相似文献   

16.
Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0-100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1-2 h of exposure to 50 mM alcohol. Exposure to 25-50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism.  相似文献   

17.
During human pregnancy, the trophoblast develops from differentiation of cytotrophoblast cells into an endocrine active syncytiotrophoblast. In culture, isolated mononuclear cytotrophoblasts aggregate and then fuse to form a syncytium, reproducing the in vivo process. In this study, we examined the effect of low oxygen tension (approximately 9%, hypoxia) compared to standard conditions (approximately 19% oxygen, normoxia) on these cellular events. Under hypoxia, syncytial formation was less frequently observed, cell staining and electron microscopy revealed that cytotrophoblasts remain aggregated, with a positive proliferative cell nuclear antigen (PCNA) immunostaining. Desmoplakin and E-cadherin, both known to disappear with cytotrophoblast fusion, showed persistent expression in hypoxic cells after 3 days of culture. In contrast, the expression of actin and ezrin, two cytoskeletal proteins, was unchanged. hCG secretion and hPL expression were both decreased in hypoxic cells, reflecting a reduced syncytial formation. Thus, on day 3, the mean values for hCG secretion were 1,100 ± 155 and 289 ± 26 mlU/mL in normoxic and hypoxic conditions, respectively. The reduced cell fusion process as well as hCG secretion and hPL expression under hypoxia were reversed by reoxygenation of the cells. We conclude that under hypoxia, the formation of functional syncytiotrophoblast is impaired due to a defect in the cytotrophoblast fusion process. This may explain the observation of a higher number of cytotrophoblast cells and a reduced syncytial layer in placentas of some pathological pregnancies. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Human fetal development depends on the embryo rapidly gaining access to the maternal circulation. The trophoblast cells that form the fetal portion of the human placenta have solved this problem by transiently exhibiting certain tumor-like properties. Thus, during early pregnancy fetal cytotrophoblast cells invade the uterus and its arterial network. This process peaks during the twelfth week of pregnancy and declines rapidly thereafter, suggesting that the highly specialized, invasive behavior of the cytotrophoblast cells is closely regulated. Since little is known about the actual mechanisms involved, we developed an isolation procedure for cytotrophoblasts from placentas of different gestational ages to study their adhesive and invasive properties in vitro. Cytotrophoblasts isolated from first, second, and third trimester human placentas were plated on the basement membrane-like extracellular matrix produced by the PF HR9 teratocarcinoma cell line. Cells from all trimesters expressed the calcium-dependent cell adhesion molecule cell-CAM 120/80 (E-cadherin) which, in the placenta, is specific for cytotrophoblasts. However, only the first trimester cytotrophoblast cells degraded the matrices on which they were cultured, leaving large gaps in the basement membrane substrates and releasing low molecular mass 3H-labeled matrix components into the medium. No similar degradative activity was observed when second or third trimester cytotrophoblast cells, first trimester human placental fibroblasts, or the human choriocarcinoma cell lines BeWo and JAR were cultured on radiolabeled matrices. To begin to understand the biochemical basis of this degradative behavior, the substrate gel technique was used to analyze the cell-associated and secreted proteinase activities expressed by early, mid, and late gestation cytotrophoblasts. Several gelatin-degrading proteinases were uniquely expressed by early gestation, invasive cytotrophoblasts, and all these activities could be abolished by inhibitors of metalloproteinases. By early second trimester, the time when cytotrophoblast invasion rapidly diminishes in vivo, the proteinase pattern of the cytotrophoblasts was identical to that of term, noninvasive cells. These results are the first evidence suggesting that specialized, temporally regulated metalloproteinases are involved in trophoblast invasion of the uterus. Since the cytotrophoblasts from first trimester and later gestation placentas maintain for several days the temporally regulated degradative behavior displayed in vivo, the short-term cytotrophoblast outgrowth culture system described here should be useful in studying some of the early events in human placen  相似文献   

19.
20.
The amino-terminal extremity of the human immunodeficiency virus type 1 transmembrane protein (gp41) is thought to play a pivotal role in the fusion of virus membranes with the plasma membrane of the target cell and in syncytium formation. Peptides with sequences taken from the human immunodeficiency virus type 1 gp41 fusogenic (synthetic peptides SPwt and SP-2) and nonfusogenic (SP-3 and SP-4) glycoproteins adopt mainly a beta-sheet conformation in the absence of lipid, as determined by attenuated total reflection Fourier transform infrared spectroscopy, and after interaction with large unilamellar liposomes, the beta-sheet is partly converted into an alpha-helical conformation. Peptides SPwt and SP-2 but not SP-3 or SP-4 were able to promote lipid mixing as assessed by fluorescence energy transfer assay and dye leakage in a vesicle leakage assay. By using polarized attenuated total reflection Fourier transform infrared spectroscopy, SPwt and SP-2 were found to adopt an oblique orientation in the lipid membrane whereas SP-3 and SP-4 were oriented nearly parallel to the plane of the membrane. These findings confirm the correlation between the membrane orientation of the alpha-helix and the lipid mixing ability in vitro. Interestingly, the data provide a direct correlation with the fusogenic activity of the parent glycoproteins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号