首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
To image implant-surrounding activated macrophages, a macrophage-specific PET probe was prepared by conjugating folic acid (FA) and 2,2′,2″,2?-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetracetic acid (DOTA) to polyethylene glycol (PEG) and then labeling the conjugate with Ga-68. In vivo PET imaging evaluations demonstrate that the probe is able to detect foreign body reactions, and more importantly, quantify the degree of inflammatory responses to an implanted medical device. These results were further validated by histological analysis.  相似文献   

3.
van den Hoff J 《Amino acids》2005,29(4):341-353
Summary. The central distinguishing feature of positron emission tomography (PET) is its ability to investigate quantitatively regional cellular and molecular transport processes in vivo with good spatial resolution. This review wants to provide a concise overview of the established principles underlying quantitative data evaluations of the acquired PET images. Especially, the compartment modelling framework is discussed on which virtually all quantification methods utilized in PET are based. The aim of the review is twofold: first, to provide the reader with an idea of the theoretical framework and mathematical tools and second, to enable an intuitive grasp of the possibilities and limitations of a quantitative approach to PET data evaluation. This should facilitate an understanding of how PET measurements translate into quantities such as regional blood flow, volume of distribution, and metabolic rates of specific substrates.  相似文献   

4.
INTRODUCTION: Medullary thyroid carcinoma (MTC) is usually more advanced at presentation than differentiated thyroid cancers and often has distant metastases. The primary treatment of MTC is total thyroidectomy and regional lymph node dissection. The efficacy of these procedures has been limited by the aggressiveness of the disease and metastatic spread at the time of surgery. Persistently elevated levels of calcitonin (CT) and carcinoembryonic antigen (CEA) or their increase postoperatively are indicative for residual or recurrent disease. Conventional imaging methods such as ultrasonography, computed tomography, magnetic resonance imaging and MIBI scintigraphy usually fail to find the source of calcitonin. Better imaging properties have been shown by DMSA scintigraphy, somatostatin receptor scintigraphy or by positron emission tomography (PET). The aim of the study was to evaluate the diagnostic accuracy of PET for the localisation of occult MTC in patients after surgery with increased concentrations of CT, in whom conventional imaging procedures have not been successful. MATERIAL AND METHODS: The PET investigation using (18)F-fluoro- 2-deoxy-D-glucose combined with computed tomography ((18)FDG-PET/CT) was performed at the Department of Nuclear Medicine (Oncology Centre in Bydgoszcz) between January and October 2004. In five patients with postoperative calcitonin ranging from 164 to > 2000 ng/l (normal < 10 ng/l) no tumour lesions were found using other imaging methods. RESULTS: In four of five cases, responsible lesions with a higher metabolism of FDG, indicating MTC tissue (remnants or metastases), were localised. In one patient no focus of FDG accumulation was found despite high CT concentration. PET detected tumour manifestations in the neck and the mediastinum in two patients, in the lung and the left adrenal gland in one case and in the neck and the liver in another patient. As a result of surgery for the removal of a residual tumour or metastases the accuracy of diagnosis was confirmed by histopathology in all four cases and a decrease in CT and CEA levels was observed in 3/4 cases. The metabolic imaging findings by PET/CT ensured that the surgery on these patients was successful. CONCLUSIONS: For the detection of occult residual or metastatic MTC lesions, (18)FDG-PET is a valuable procedure in imaging diagnostics.  相似文献   

5.
Considering the high cost of dedicated small-animal positron emission tomography/computed tomography (PET/CT), an acceptable alternative in many situations might be clinical PET/CT. However, spatial resolution and image quality are of concern. The utility of clinical PET/CT for small-animal research and image quality improvements from super-resolution (spatial subsampling) were investigated. National Electrical Manufacturers Association (NEMA) NU 4 phantom and mouse data were acquired with a clinical PET/CT scanner, as both conventional static and stepped scans. Static scans were reconstructed with and without point spread function (PSF) modeling. Stepped images were postprocessed with iterative deconvolution to produce super-resolution images. Image quality was markedly improved using the super-resolution technique, avoiding certain artifacts produced by PSF modeling. The 2 mm rod of the NU 4 phantom was visualized with high contrast, and the major structures of the mouse were well resolved. Although not a perfect substitute for a state-of-the-art small-animal PET/CT scanner, a clinical PET/CT scanner with super-resolution produces acceptable small-animal image quality for many preclinical research studies.  相似文献   

6.
Radiolabeling of liposomes with 64Cu (t(1/2)=12.7 h) is attractive for molecular imaging and monitoring drug delivery. A simple chelation procedure, performed at a low temperature and under mild conditions, is required to radiolabel preloaded liposomes without lipid hydrolysis or the release of the encapsulated contents. Here, we report a 64Cu postlabeling method for liposomes. A 64Cu-specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N',N'-tetraacetic acid (BAT), was conjugated with an artificial lipid to form a BAT-PEG-lipid. After incorporation of 0.5% (mol/mol) BAT-PEG-lipid during liposome formulation, liposomes were successfully labeled with 64Cu in 0.1 M NH4OAc pH 5 buffer at 35 degrees C for 30-40 min with an incorporation yield as high as 95%. After 48 h of incubation of 64Cu-liposomes in 50/50 serum/PBS solution, more than 88% of the 64Cu label was still associated with liposomes. After injection of liposomal 64Cu in a mouse model, 44+/-6.9, 21+/-2.7, 15+/-2.5, and 7.4+/-1.1 (n=4) % of the injected dose per cubic centimeter remained within the blood pool at 30 min, 18, 28, and 48 h, respectively. The biodistribution at 48 h after injection verified that 7.0+/-0.47 (n=4) and 1.4+/-0.58 (n=3) % of the injected dose per gram of liposomal 64Cu and free 64Cu remained in the blood pool, respectively. Our results suggest that this fast and easy 64Cu labeling of liposomes could be exploited in tracking liposomes in vivo for medical imaging and targeted delivery.  相似文献   

7.
The synthesis of a new lipophilic thioflavin-T analogue (2-[4' -(methylamino)phenyl]benzothiazole, 6) with high affinity for amyloid is reported. Intravenous injection of [(11)C]-labeled 6 in control mice resulted in high brain uptake. Amyloid deposits were imaged with multiphoton microscopy in the brains of living transgenic mice following the systemic injection of unlabeled 6. [(11)C]6 is a promising amyloid imaging agent for Alzheimer's disease.  相似文献   

8.
The analysis of structural brain asymmetry has been a focal point in anthropological theories of human brain evolution and the development of lateralized behaviors. While physiological brain asymmetries have been documented for humans and animals presenting with pathological conditions or under certain activation tasks, published studies on baseline asymmetries in healthy individuals have produced conflicting results. We tested for the presence of cerebral blood flow asymmetries in 7 healthy, sedated baboons using positron emission tomography, a method of in vivo autoradiography. Five of the 7 baboons exhibited hemispheric asymmetries in which left-sided flow was significantly greater than right-sided flow. Furthermore, the degree of asymmetry in 8 of 24 brain regions was found to be significantly correlated with age; older individuals exhibited a higher degree of asymmetry than younger individuals. Cerebral blood flow itself was uncorrelated with age, and differences between males and females were not significant.  相似文献   

9.
This article reported the synthesis and bioevaluation of two [18F] labeled benzimidazole derivatives, 4-(5-(2-[18F] fluoro-4-nitrobenzamido)-1-methyl-1H-benzimidazol-2-yl) butanoic acid ([18F] FNBMBBA, [18F]a1) and 3-(2-fluoroethyl)-7-methyl-2-propyl-3H-benzimidazole-5-carboxylic acid ([18F] FEMPBBA, [18F]b1) for PET tumor imaging. The preparation [18F] FEMPBBA was completed in 1 h with overall radiochemical yield of 50–60% (without decay corrected). Biodistribution assay in S180 tumor bearing mice of both compounds were carried out, and the results are both meaningful. [18F] FEMPBBA which can be taken as a revision of [18F] FNBMBBA got an excellent result, and has significant advantages in some aspects compared with L-[18F] FET and [18F]-FDG in the same animal model, especially in tumor/brain uptake ratio. The tumor/brain uptake ratio of [18F] FEMPBBA gets to 4.81, 7.15, and 9.8 at 30 min, 60 min and 120 min, and is much higher than that of L-[18F] FET (2.54, 2.92 and 2.95) and [18F]-FDG (0.61, 1.02, 1.33) at the same time point. The tumor/muscle and tumor/blood uptake ratio of [18F] FEMPBBA is also higher than that of L-[18F] FET at 30 min and 60 min. This result indicates compound [18F] FEMPBBA is a promising radiotracer for PET tumor imaging.  相似文献   

10.
Targeting peptides and positron emission tomography   总被引:1,自引:0,他引:1  
Biologically active peptides have during the last decades made their way into conventional nuclear medicine diagnosis using single photon emission computed tomography (SPECT) and gamma-camera. Several clinical trails are also investigating the role of radiolabeled peptides for targeting radionuclide therapy. This has raised the question as to whether positron emission tomography (PET) can be used in order to obtain better quantitative information of the peptide distribution in tumor and healthy organs, i.e., to get a better dosimetry. Positron emitting analogs of the therapeutic radionuclides used have been produced and successfully applied in peptide pharmacokinetic measurements with PET. But the recent boom in (18)FDG-PET ((18)FDG = [(18)F]2-deoxy-2-fluoro-D-glucose), and with this a worldwide increasing number of PET systems, has also inspired several research groups to hunt for alternative labels to be used for peptide diagnostics and PET. The rapid kinetic of short peptides agrees well with the short half-lives of standard PET nuclides like (11)C and (18)F. Especially, (18)F appears to be excellent for labeling bioactive peptides due to its favorable physical and nuclear characteristics. However, with present techniques labeling peptides with (18)F is laborious and time-consuming, and is not yet a clinical alternative. Other halogens like (75, 76)Br and (124)I are, from the chemical point of view, easier to apply. But an even better labeling alternative may be positron emitting metal ions like (55)Co, (68)Ga, and (110m)In since they tend to give better intracellular retention and thus a better signal-to-background ratio than the halogen labels. The main drawback with these radionuclides is that they are not readily available. Some of these radionuclides also emit gamma in their decay that may affect the measuring properties of the PET equipment. This article reviews mainly the present situation of production and use of nonconventional positron emitters for peptide labeling.  相似文献   

11.
Emerging applications for positron emission tomography (PET) may require the ability to image very low activity source distributions in the body. The performance of clinical PET scanners in the regime where activity in the field of view is <1 MBq has not previously been explored. In this study, we compared the counting rate performance of two clinical PET/CT scanners, the Siemens Biograph Reveal 16 scanner which is based on lutetium oxyorthosilicate (LSO) detectors and the GE Discovery-ST scanner which is based on bismuth germanate (BGO) detectors using a modified National Electrical Manufacturers Association (NEMA) NU 2-2007 protocol. Across the activity range studied (2–100 kBq/mL in a 5.5 mL line source in the NEMA scatter phantom), the BGO-based scanner significantly outperformed the LSO-based scanner. This was largely due to the effect of background counts emanating from naturally occurring but radioactive 176Lu within the LSO detector material, which dominates the observed counting rate at the lowest activities. Increasing the lower energy threshold from 350 keV to 425 keV in an attempt to reduce this background did not significantly improve the measured NECR performance. The measured singles rate due to 176Lu emissions within the scanner energy window was also found to be dependent on temperature, and to be affected by the operation of the CT component, making approaches to correct or compensate for the background more challenging. We conclude that for PET studies in a very low activity range, BGO-based scanners are likely to have better performance because of the lack of significant background.  相似文献   

12.
Positron emission tomography (PET) with H2(15)O was used as an in vivo, relatively noninvasive, quantitative method for measuring regional blood flow to hindlimb skeletal muscle of anesthetized dogs. A hydrooccluder positioned on the femoral artery was used to reduce flow, and high-flow states were produced by local infusion of adenosine. Three to four measurements were made in each animal. Approximately 40 mCi of H2(15)O were injected intravenously, and serial images and arterial blood samples were acquired over 2.5 min. Data analysis was performed by fitting tissue and arterial blood time-activity curves to a modified, single-compartment Kety model. The model equation was also solved on a pixel-by-pixel basis to yield maps of regional skeletal muscle blood flow. After each PET determination, flow was measured with radioactive microspheres. Results of the PET measurements demonstrated that basal flow to hindlimb skeletal muscle was 3.83 +/- 0.36 ml x min(-1) x 100 g(-1) (mean +/- SE). This value was in excellent agreement with the microsphere data, 3.73 +/- 0.32 ml x min(-1) x 100 g(-1) (P = 0.69, not significant). Adenosine infusion resulted in flows as high as 30 ml x min(-1) x 100 g(-1), and the PET and microsphere data were highly correlated over the entire range of flows (r2 = 0.98, P < 0.0001). We conclude that muscle blood flow can be accurately measured in vivo by PET with H2(15)O and that this approach offers promise for application in human studies of muscle metabolism under varying pathophysiological states.  相似文献   

13.
Herpes simplex virus type 1 (HSV-1) is one of the most common causes of sporadic encephalitis. The initial clinical course of HSV encephalitis (HSE) is highly variable, and the infection may be rapidly fatal. For effective treatment with antiviral medication, an early diagnosis of HSE is crucial. Subtle brain infections with HSV may be causally related to neuropsychiatric disorders such as Alzheimer's dementia. We investigated the feasibility of a noninvasive positron emission tomography (PET) imaging technique using [(18)F]FHPG as a tracer for the detection of HSE. For this purpose, rats received HSV-1 (infected group) or phosphate-buffered saline (control group) by intranasal application, and dynamic PET scans were acquired. In addition, the distribution of tracer accumulation in specific brain areas was studied with phosphor storage imaging. The PET images revealed that the overall brain uptake of [(18)F]FHPG was significantly higher for the infected group than for control animals. Phosphor storage images showed an enhanced accumulation of [(18)F]FHPG in regions known to be affected after intranasal infection with HSV. High-performance liquid chromatography metabolite analysis showed phosphorylated metabolites of [(18)F]FHPG in infected brains, proving that the increased [(18)F]FHPG uptake in infected brains was due to HSV thymidine kinase-mediated trapping. Freeze lesion experiments showed that damage to the blood-brain barrier could in principle induce elevated [(18)F]FHPG uptake, but this nonspecific tracer uptake could easily be discriminated from HSE-derived uptake by differences in the tracer kinetics. Our results show that [(18)F]FHPG PET is a promising tool for the detection of HSV encephalitis.  相似文献   

14.
Methods for tagging biomolecules with fluorine 18 as immuno-positron emission tomography (immunoPET) tracers require tedious optimization of radiolabeling conditions and can consume large amounts of scarce biomolecules. We describe an improved method using a digital microfluidic droplet generation (DMDG) chip, which provides computer-controlled metering and mixing of 18F tag, biomolecule, and buffer in defined ratios, allowing rapid scouting of reaction conditions in nanoliter volumes. The identified optimized conditions were then translated to bench-scale 18F labeling of a cancer-specific engineered antibody fragments, enabling microPET imaging of tumors in xenografted mice at 0.5 to 4 hours postinjection.  相似文献   

15.
16.
17.
A series of novel fluoroalkyl-containing tropane derivatives (6-8, 10-14, 17, and 18) were synthesized from cocaine. Novel compounds were evaluated for affinity and selectivity in competitive radioligand binding assays selective for cerebral serotonin (5-HT), dopamine (DA), and norepinephrine (NE) transporters (SERT, DAT, and NET). The nortropane-fluoroalkyl esters (7, 10, 11) were most potent for SERT (K(i): 0.18, 0.24, and 0.30 nM, respectively). Tosylate esters 17 and 18, synthesized as precursors for [(18)F]-labeled, Positron Emission Tomography (PET) imaging agents, also showed high affinity for DAT.  相似文献   

18.
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.  相似文献   

19.
The authors used an ultraviolet laser as an excitation source to obtain fluorescence spectra from 4 μl of solution, or 0.1 μl equivalent of powder. A sensitivity of 0.1 part per trillion quinine sulfate was obtained. The system was sufficiently sensitive to detect Raman shifts. A measurement of the degree of fluorescence polarization was made.  相似文献   

20.
Well-known as an important regulator of lipid metabolism and adipocyte differentiation, the peroxisome proliferator-activated receptor gamma (PPARgamma) also has potential use as a target for antitumor therapy in certain cancers. To develop agents for radionuclide imaging PPARgamma in vivo, we synthesized fluorine, bromine, and iodine-substituted analogs (1-3) of a high-affinity benzophenone-tyrosine PPARgamma ligand; all three analogs retain very high affinity for the PPARgamma receptor. In preparation for the synthesis of these PPARgamma ligands in radiolabeled form, we have synthesized two types of precursors: (a) an aryltributylstannane (9), from which the bromine and iodine-substituted analogs (2 and 3) can readily be prepared by electrophilic destannylation, and (b) three diaryliodonium tosylate derivatives (12a-c), precursors for nucleophilic aromatic fluorination using fluoride ion. Conditions were developed whereby the thiophenyliodonium tosylate (12c) underwent nucleophilic aromatic substitution with fluoride ion, efficiently and in short reaction times, to produce the desired fluorine-substituted target compound 1. These reactions laid the groundwork for producing these three PPARgamma ligands in radiolabeled form; in addition, our use of diaryliodonium ion precursors for aromatic fluorination in this series provides an example that should encourage application of this approach for radiofluorination of more complicated radiopharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号