首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved.  相似文献   

2.
Choi SK  Chang HN  Lee GM  Kim IH  Oh DJ 《Cytotechnology》1995,17(3):173-183
A depth filter perfusion system (DFPS) with polypropylene fibers had been demonstrated to support high density cultures of anchorage-independent hybridoma cells. The DFPS provides advantages of high surface-to-volume ratio of 450–600 cm2/cm3, low cost set-up, easy operation and scale-up. To test the feasibility of using DFPS for high density cultures of anchorage-dependent cells, Vero cells were cultivated in the DFPS. Gelatin coating on polypropylene fibers in the DFPS was necessary to promote cell attachment and growth. Dissolved oxygen (DO) concentrations could be controlled by sparging air into the reservoir vessel through a filter sparger. When DO concentration was controlled above 40% of air saturation in the DFPS with 40 m pore size, the maximum cell concentration as estimated on specific lactate production rate, was 3.81×107 cells/ml of the total reactor volume. This viable cell concentration is approximately 18 times higher than that obtained in a T-flask batch culture. Taken together, the results obtained here showed the potential of DFPS for high-density cultures of anchorage-dependent cells.  相似文献   

3.
High density cell cultivation of a marine photosynthetic bacterium, Rhodovulum sp. PS88 with self-flocculated cells was established by using a single-tower fermenter. High density cell culture with continuous cultivation was yielded 43 g dry matter l–1 with acetate as a substrate consumed at 22.5 g/l day. © Rapid Science Ltd. 1998  相似文献   

4.
为提高酿酒酵母工程菌S7香紫苏醇产量,采用摇瓶培养,研究了其生长和代谢特点,发现产物合成与菌体生长密切关联。在3 L发酵罐中通过补料-溶氧联动控制的方式,以葡萄糖、乙醇和葡萄糖/乙醇混合物为碳源进行高密度培养,香紫苏醇产量分别达到253 mg/L、386 mg/L和408 mg/L,最高产量是摇瓶培养的27倍。说明添加乙醇作为碳源有助于香紫苏醇合成。研究结果对优化酿酒酵母细胞工厂,高效生产萜类化合物具有重要参考价值。  相似文献   

5.
A single-pass, plug-flow bioreactor has been developed in which oxygen is supplied to entrapped hybridoma cells via sllicone tubes threaded through the square channels of a macroporous ceramic monolith. Oxygen diffuses from the gas phase, through the silicone tubing, across the open square channel, and into the pores of the ceramic wall where it is consumed by entrapped cells. Advantages of such a reactor include higher product yields, protection of cells from detrimental hydrodynamic effects, no internal moving parts to compromise asepsis, and simplicity of operation. A prototype bioreactor was constructed and operated over a range of residence times. A side-by-side experimental comparison with a conventional recycle bioreactor was performed by inoculating both bioreactors with cells from the same stock culture and feeding medium from the same reservoir. Final antibody titers were 80% higher in the single-pass bioreactor at a residence time of 200 minutes compared with those of the recycle bioreactor at a residence time of 800 minutes. A theoretical analysis of oxygen transport in this bioreactor is developed to highlight important design criteria and operating strategies for scale-up. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
Two mouse myeloma cell lines which were transfected with chimeric mouse variable-human constant immunoglobulin heavy and light chain genes have been cultured at high cell density in a settling perfusion culture vessel to produce chimeric antibody specific for human common acute lymphocytic leukemia antigen (cALLA).J558L transfectant proliferated well in a serum-free medium (ITES-eRDF) to a viable cell density of 3.7×107 cells/ml and produced chimeric antibody to a maximum value of 60 g/ml in 120 ml scale vessel. X63Ag8.653 transfectant reached a density of 1.9×107 cells/ml in 1.2 I scale vessel in serum supplemented medium (10% FCS-eRDF) and produced chimeric antibody which consisted of chimeric gamma and chimeric kappa chains to a maximum value of 5.8 g/ml.  相似文献   

7.
Performance of mammalian cell culture bioreactor with a new impeller design   总被引:3,自引:0,他引:3  
To improve the oxygen transfer in a mammalian cell bioreactor, a new type of impeller consisting of a double-screen concentric cylindrical cage impeller (annular cage impeller in short) was designed and its mass transfer rate evaluated. This new impeller design increases the specific screen area, and the convective mass transfer rate through the annular cage was significantly increased. The oxygen transfer rates with the new impeller and the commercially available cell-lift impeller (CelliGen by New Brunswick Scientific Co.) were evaluated and their performance compared at various rates of aeration and agitation. The results showed that with the new impeller, the oxygen transfer rate was increased by 19% in water and 21% in cell-free culture medium supplemented with 10% horse serum, the total hybridoma cell concentration was increased to 3.4 x 10(7) cells/mL, and the IgG(1) subtype monoclonal antibody (MAb) product concentration was also increased to 512 mg/L in perfusion culture of murine hybridoma cell line 62'D3. These improvements in oxygen transfer rate, cell concentration, and MAb product concentration are all very significant. The mass transfer resistance in the cell-lift impeller system was found to be mainly due to the surface area of the single-screen cage impeller. The new annular cage impeller not only provided the increased surface area for convective oxygen transfer but also protected cells from hydrodynamic shear damage, thereby achieving a significant bioprocess improvement in terms of higher viable cell concentration, higher product concentration, and higher oxygen transfer rate in the mammalian cell bioreactor system.  相似文献   

8.
In bioprocess development, the 96-well plate format has been widely used for high-throughput screening of production cell line or culture conditions. However, suspension cell cultures in conventional 96-well plates often fail to reach high cell density under normal agitation presumably due to constraints in oxygen transfer. Although more vigorous agitation can improve gas transfer in 96-well plate format, it often requires specialized instruments. In this report, we employed Fluorinert, a biologically inert perfluorocarbon, to improve oxygen transfer in 96-well plate and to enable the growth of a Chinese Hamster Ovary cell line expressing a recombinant monoclonal antibody. When different amounts of Fluorinert were added to the cell culture medium, a dose-dependent improvement in cell growth was observed in both conventional and deep square 96-well plates. When sufficient Fluorinert was present in the culture, the cell growth rate, the peak cell density, and recombinant protein production levels achieved in deep square 96-wells were comparable to cultures in ventilated shake flasks. Although Fluorinert is known to dissolve gases such as oxygen and CO(2), it does not dissolve nor extract medium components, such as glucose, lactate, or amino acids. We conclude that mixing Fluorinert with culture media is a suitable model for miniaturization of cell line development and process optimization. Proper cell growth and cellular productivity can be obtained with a standard shaker without the need for any additional aeration or vigorous agitation.  相似文献   

9.
基因工程菌的发酵技术是基因工程药物大规模生产所必备的关键技术,本文对于重组GM-CDF/IL-3融合蛋白表达菌株E.coli BL21(DE3)(pFu)的生长及产物表达规律进行了探索,在此基础上进行高密度发酵研究,真体最终发酵密度达OD600值60以上,目的产物占菌体总蛋白25%以上。  相似文献   

10.
This review focuses on cultivation of mammalian cells in a suspended perfusion mode. The major technological limitation in the scaling-up of these systems is the need for robust retention devices to enable perfusion of medium as needed. For this, cell retention techniques available to date are presented, namely, cross-flow filters, hollow fibers, controlled-shear filters, vortex-flow filters, spin-filters, gravity settlers, centrifuges, acoustic settlers, and hydrocyclones. These retention techniques are compared and evaluated for their respective advantages and potential for large-scale utilization in the context of industrial manufacturing processes. This analysis shows certain techniques have a limited range of perfusion rate where they can be implemented (most microfiltration techniques). On the other hand, techniques were identified that have shown high perfusion capacity (centrifuges and spin-filters), or have a good potential for scale-up (acoustic settlers and inclined settlers). The literature clearly shows that reasonable solutions exist to develop large-scale perfusion processes.  相似文献   

11.
Summary Chondrocytes isolated from the proliferative and differentiating zones of 3-wk-old chick growth plates were cultured in the presence of 10% fetal bovine serum (FBS) and ascorbic acid for up to 21 d in a high cell density culture within Eppendorf tubes. The proliferative, differentiating, and calcification properties of the chondrocytes were examined by immunolocalization and by enzyme histochemical and biochemical methods. The cells maintained a chondrocyte phenotype throughout culture: they were round in shape and synthesized both collagen type II and proteoglycans. The expression of a hypertrophic phenotype was evident by Day 3 of culture and from this time onwards characteristics of terminal differentiation were observed. The cells were positive for both alkaline phosphatase (ALP) activity and c-myc protein and the surrounding matrix stained strongly for collagen type X. Small foci of mineralization associated with individual chondrocytes were first evident by Day 6 and more widespread areas of mineralization occupying large areas of matrix were present by Day 15. Mineralization occurred without the addition of exogenous phosphate to the medium. This culture system displays characteristics that are similar in both morphological and developmental terms to that of chick chondrocyte differentiation and calcification in vivo and therefore offers an excellent in vitro model for endochondral ossification.  相似文献   

12.
Mouse-human hybridoma X87X cells were cultivated using a novel perfusion culture apparatus provided with three-settling zones to separate the cells from the culture medium by gravitational settling. The maximum viable cell density in a serum-free culture medium attained 3.0×107 cells/ml, when the specific perfusion rate was set to 2.3 vol day-1, and monoclonal antibody was continuously produced. These results were almost the same as those in the perfusion culture vessel with one settling zone and revealed that the process with a plurality of settling zones is a promising one for scale-up of a gravitation type of perfusion culture vessel.  相似文献   

13.
High cell density of Panax notoginseng in a 17 l airlift bioreactor was achieved in batch cultivation using a modified MS medium. The dry cell weight, ginseng saponin and polysaccharide reached 24, 1.7 and 2.8 g l–1, respectively, after 15 d. A strategy of sucrose feeding based on changes in the specific O2 uptake rate was applied to the cell cultures, which increased these respective yields to 30, 2.3 and 3.2 g l–1.  相似文献   

14.
High cell density cultures of CHO cells growing in a bioreactor under dissolved oxygen control were found to undergo spontaneous bifurcations and a subsequent loss of stability some time into the fermentation. This loss of stability was manifested by sustained and amplified oscillations in the bioreactor dissolved oxygen concentration and in the oxygen gas flow rate to the reactor. To identify potential biological and operational causes for the phenomenon, linear stability analysis was applied in a neighborhood of the experimentally observed bifurcation point. The analysis revealed that two steady state process gains, K(P1) and K(P2), regulated k(l)a and gas phase oxygen concentration inputs, respectively, and the magnitude of K(P1) was found to determine system stability about the bifurcation point. The magnitude of K(P1), and hence the corresponding open-loop steady state gain K(OL1), scaled linearly with the bioreactor cell density, increasing with increasing cell density. These results allowed the generation of a fermentation stability diagram, which partitioned K(C)-N operating space into stable and unstable regions separated by the loci of predicted critically stable controller constants, K(C,critical), as a function of bioreactor cell density. This consistency of this operating diagram with experimentally observed changes in system stability was demonstrated. We conclude that time-dependent increases in cell density are the cause of the observed instabilities and that cell density is the critical bifurcation parameter. The results of this study should be readily applicable to the design of a more robust controller.  相似文献   

15.
高密度培养表达大肠杆菌生产重组铜绿假单胞菌外毒素A(rEPA)。用上海高机公司的30L自控发酵罐,采用分批补料培养技术,维持葡萄糖的浓度始终处于较低的水平,并分批补加氮源,同时溶氧控制在30%~40%,pH自动调控至7.0,培养至对数中期进行诱导。重组菌最终发酵液光密度(A600)未诱导时达到44,诱导时达到36,在上清液中表达的rEPA蛋白的含量占总蛋白的28.1%,在菌体中表达蛋白含量占总蛋白的4.7%。本实验为rE-PA的大规模生产奠定了基础。  相似文献   

16.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

17.
18.
Substrate inhibition is one of the major problems preventing high cell densities of microalgae in heterotrophic culture, so the possibility of overcoming the problem by various culture techniques was examined. It was found that perfusion culture may be the most appropriate technique for high cell densities in heterotrophic culture using inhibitory substrates. An experimental example in which a hollow fibre cell recycle system (HFCRS) was employed to achieve high cell densities of Chlamydomonas reinhardtii on acetate under heterotrophic conditions of growth was demonstrated. The cell density in the HFCRS was much higher than that reported in the literature for this species.  相似文献   

19.
The influence of centrifugal force on the growth of cells was examined by exposing the cells of the mouse-human hybridoma X87 line to centrifugal force (100–500 G) for ten minutes twice a day and comparing the static culture with that of unexposed cells. In this experiment, both cell proliferation and specific antibody productivity were independent of the centrifugal effect, and gave the same results as in the case of no exposure to centrifugal force. High density cultivation of the mouse-human hybridoma X87 line was obtained by a perfusion system where the cells were separated from the culture medium by continuous centrifugation. In the serum-free culture, the maximum viable cell density exceeded 107 cells/ml, and monoclonal antibody was stably produced for 37 days. The results in this culture were equivalent to those obtained by intermittent centrifugal cell separation from the culture medium, and separation by gravitational settlement.  相似文献   

20.
Bacillus subtilis BD170, harboring a plasmid pGT44[phyC] carrying the phytase gene (phyC) and a phosphate-depletion inducible pst-promoter, was grown in a 2 l bioreactor. Using a controlled feeding of glucose, high cell densities of 32 and 56 g dry cell weight l–1 were achieved with peptone and yeast extract, respectively, as the complex nitrogen sources in a semi-defined growth medium. The fed-batch protocol was applied to production of recombinant phytase and a high extracellular phytase activity (48 U ml–1) was reached with peptone. Although the yeast extract feeding resulted in a higher cell density, it was unsuitable as a medium component for phytase expression due to its relatively high phosphate content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号