首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-Hydroxybenzoate hydroxylase is extensively studied as a model for single-component flavoprotein monooxygenases. It catalyzes a reaction in two parts: (1) reduction of the FAD in the enzyme by NADPH in response to binding of p-hydroxybenzoate to the enzyme and (2) oxidation of reduced FAD with oxygen in an environment free from solvent to form a hydroperoxide, which then reacts with p-hydroxybenzoate to form an oxygenated product. These different reactions are coordinated through conformational rearrangements of the protein and the isoalloxazine ring during catalysis. Until recently, it has not been clear how p-hydroxybenzoate gains access to the buried active site. In 2002, a structure of a mutant form of the enzyme without substrate was published that showed an open conformation with solvent access to the active site [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613]. The wild-type enzyme does not form high-resolution crystals without substrate. We hypothesized that the wild-type enzyme without substrate also forms an open conformation for binding p-hydroxybenzoate, but only transiently. To test this idea, we have studied the properties of two different mutant forms of the enzyme that are stabilized in the open conformation. These mutant enzymes bind p-hydroxybenzoate very fast, but with very low affinity, as expected from the open structure. The mutant enzymes are extremely inactive, but are capable of slowly forming small amounts of product by the normal catalytic pathway. The lack of activity results from the failure of the mutants to readily form the out conformation required for flavin reduction by NADPH. The mutants form a large fraction of an abnormal conformation of the reduced enzyme with p-hydroxybenzoate bound. This conformation of the enzyme is unreactive with oxygen. We conclude that transient formation of this open conformation is the mechanism for sequestering p-hydroxybenzoate to initiate catalysis. This overall study emphasizes the role that protein dynamics can play in enzymatic catalysis.  相似文献   

2.
The oxygen transfer to p-hydroxybenzoate catalyzed by p-hydroxybenzoate hydroxylase (PHBH) has been shown to occur via a C4a-hydroperoxide of the flavin. Two factors are likely to be important in facilitating the transfer of oxygen from the C4a-hydroperoxide to the substrate. (a) The positive electrostatic potential of the active site partially stabilizes the negative charge centered on the oxygen of the flavin-C4a-alkoxide leaving group during the transition state [Ortiz-Maldonado, M., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 8124-8137]. (b) The hydrogen-bonding network ionizes the substrate to promote its nucleophilic attack on the electrophilic C4a-hydroperoxide intermediate [Entsch, B., Palfey, B. A., Ballou, D. P., and Massey, V. (1991) J. Biol. Chem. 266, 17341-17349]. This ionization is also aided by the positive electrostatic potential of the active site [Moran, G. R., Entsch, B., Palfey, B. A., and Ballou, D. P. (1997) Biochemistry 36, 7548-7556]. Substituents on the flavin can specifically affect the stability of the alkoxide leaving-group, whereas changes to specific enzyme residues can affect the charge in the active site and the hydrogen-bonding network. We have used wild-type (WT) PHBH and several mutant forms, all with normal FAD and with 8-Cl-FAD substituted for FAD, to assess the relative contributions of the two effects. Lys297Met and Asn300Asp have decreased positive charge in the active site, and these variants engender approximately 35-fold slower hydroxylation rates than the WT enzyme. Substitution of 8-Cl-FAD in these mutant forms gives approximately 1.8-fold increases in hydroxylation rates, compared with a > or =4.8-fold increase for WT with this flavin. The hydroxylation catalyzed by Tyr385Phe, a mutant enzyme form with a disrupted hydrogen-bonding network that compromises the ionization of the substrate without changing the positive charge of the active site, is stimulated 1.5-fold by substituting the enzyme with 8-Cl-FAD. The substrate, tetrafluoro-p-hydroxybenzoate, is fully ionized in WT PHBH, but this phenolate is a poor nucleophile because of the electron-withdrawing effects of the fluorine substituents. With tetrafluoro-p-hydroxybenzoate as the substrate, substitution of FAD with 8-Cl-FAD in the WT enzyme stabilizes the leaving alkoxide and leads to a 2.3-fold increase in the hydroxylation rate compared to that with FAD. Either the use of substrates that do not communicate with the proton network or the mutation of amino acid residues that perturb this interaction may prevent a necessary conformational change that allows proper orientation between reactants during the hydroxylation reaction or permits the essential protonation of the initially formed nascent flavin-C4a-peroxide anion. Thus, both activation of substrate by the proton network and stabilization of the leaving alkoxide appear to be important for oxygen transfer catalyzed by PHBH. The full effect of the substituents on the flavin (4.8-fold) can only be realized when the optimal transition state can be achieved, and this optimal state is not fully realized with the mutant forms.  相似文献   

3.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.  相似文献   

4.
Hydrogen peroxide reacts with 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase to yield a long wavelength intermediate (lambda max = 360, 620 nm) which can be isolated in stable form on removal of excess H2O2. The blue flavin derivative slowly decays in a second peroxide-dependent reaction to yield a new flavin product lacking long wavelength absorbance (lambda max = 408, 472 nm). This final peroxide-modified enzyme binds p-hydroxybenzoate with a 10-fold lower affinity than does the native enzyme; furthermore, substrate binding leads to the inhibition of enzyme reduction by NADPH. Trichloroacetic acid treatment of the final peroxide-modified enzyme results in the quantitative conversion of the bound flavin to free FAD. However, gel filtration of the modified enzyme in guanidine hydrochloride at neutral pH leads to the co-elution of protein and modified flavin. The nondenatured peroxide product reacts rapidly with hydroxylamine to yield 2-NHOH-substituted FAD. These observations indicate that the secondary reaction of peroxide with the blue intermediate from 2-thio-FAD p-hydroxybenzoate hydroxylase results in the formation of an acid-labile covalent flavin-protein linkage within the enzyme active site, involving the flavin C-2 position.  相似文献   

5.
In order to prepare a completely light-stable rhodopsin, we have synthesized an analog, II, of 11-cis retinal in which isomerization at the C11-C12 cis-double bond is blocked by formation of a cyclohexene ring from the C10 to C13-methyl. We used this analog to generate a rhodopsin-like pigment from opsin expressed in COS-1 cells and opsin from rod outer segments (Bhattacharya, S., Ridge, K.D., Knox, B.E., and Khorana, H. G. (1992) J. Biol. Chem. 267, 6763-6769). The pigment (lambda max, 512 nm) formed from opsin and analog II (rhodospin-II) showed ground state properties very similar to those of rhodopsin, but was not entirely stable to light. In the present work, 12 opsin mutants (Ala-117----Phe, Glu-122----Gln(Ala, Asp), Trp-126----Phe(Leu, Ala), Trp-265----Ala(Tyr, Phe), Tyr-268----Phe, and Ala-292----Asp), where the mutations were presumed to be in the retinal binding pocket, were reconstituted with analog II. While all mutants formed rhodopsin-like pigments with II, blue-shifted (12-30 nm) chromophores were obtained with Ala-117----Phe, Glu-122----Gln(Ala), Trp-126----Leu(Ala), and Trp-265----Ala(Tyr, Phe) opsins. The extent of chromophore formation was markedly reduced in the mutants Ala-117----Phe and Trp-126----Ala. Upon illumination, the reconstituted pigments showed varying degrees of light sensitivity; the mutants Trp-126----Phe(Leu) showed light sensitivity similar to wild-type. Continuous illumination of the mutants Glu-122----Asp, Trp-265----Ala, Tyr-268----Phe, and Ala-292----Asp resulted in hydrolysis of the retinyl Schiff base. Markedly reduced light sensitivity was observed with the mutant Trp-265----Tyr, while the mutant Trp-265----Phe was light-insensitive. Consistent with this result, the mutant Trp-265----Phe showed no detectable light-dependent activation of transducin or phosphorylation by rhodopsin kinase.  相似文献   

6.
The techniques of FTIR difference spectroscopy and site-directed mutagenesis have been combined to investigate the role of individual tyrosine side chains in the proton-pumping mechanism of bacteriorhodopsin (bR). For each of the 11 possible bR mutants containing a single Tyr----Phe substitution, difference spectra have been obtained for the bR----K and bR----M photoreactions. Only the Tyr-185----Phe mutation results in the disappearance of a set of bands that were previously shown to be due to the protonation of a tyrosinate during the bR----K photoreaction [Rothschild et al.: Proceedings of the National Academy of Sciences of the United States of America 83:347, (1986]). The Tyr-185----Phe mutation also eliminates a set of bands in the bR----M difference spectrum associated with deprotonation of a Tyr; most of these bands (e.g., positive 1272-cm-1 peak) are completely unaffected by the other ten Tyr----Phe mutations. Thus, tyrosinate-185 gains a proton during the bR----K reaction and loses it again when M is formed. Our FTIR spectra also provide evidence that Tyr-185 interacts with the protonated Schiff base linkage of the retinal chromophore, since the negative C = NH+ stretch band shifts from 1640 cm-1 in the wild type to 1636 cm-1 in the Tyr-185----Phe mutant. A model that is consistent with these results is that Tyr-185 is normally ionized and serves as a counter-ion to the protonated Schiff base. The primary photoisomerization of the chromophore translocates the Schiff base away from Tyr-185, which raises the pKa of the latter group and results in its protonation.  相似文献   

7.
R S Lloyd  M L Augustine 《Proteins》1989,6(2):128-138
Previous structure/function analyses of the DNA repair enzyme, T4 endonuclease V, have suggested that the extreme carboxyl portion of the enzyme is associated with pyrimidine dimer-specific binding (Recinos and Lloyd, and Stump and Lloyd, Biochemistry 27:1832-1838 and 1839-1843, 1988, respectively). Within the final 11 amino acids there are 5 aromatic, 2 basic, and no acidic residues and it has been proposed that these residues stack with and electrostatically interact with the kinked DNA at the site of a pyrimidine dimer. The role of the tyrosine residue at position 129 has been investigated by oligonucleotide site-directed mutagenesis in which the codon for Tyr-129 has been altered to reflect conservative changes of Trp and Phe and more dramatic changes of Ser, a stop codon, deletion of the codon or introduction of a frameshift. Both changes to the aromatic amino acids resulted in proteins which accumulated well in E. coli and not only significantly enhanced the UV survival of repair-deficient cells but also complemented a defective denV gene within UV-irradiated T4 phage. Partially purified preparations of the Tyr-129----Trp and Tyr-129----Phe mutants were assayed for their ability to processively incise UV-irradiated plasmid DNA (a nicking reaction carried out at low 25 mM salt concentrations). The mutant enzymes Tyr-129----Phe and Tyr-129----Trp displayed a 1000% and 500% enhanced specific nicking activity, respectively. These reactions were also shown to be completely processive. Assays performed at higher (100 mM) salt concentrations reduced the specific activities of the mutant enzymes approximately to that of wild type for the Tyr-129----Phe mutant and to 20% that of wild type for the Tyr-129----Trp mutant.  相似文献   

8.
Basran J  Fullerton S  Leys D  Scrutton NS 《Biochemistry》2006,45(37):11151-11161
Residues His-225 and Tyr-259 are located close to the FAD in the dehydrogenase active site of the bifunctional dimethylglycine oxidase (DMGO) of Arthrobacter globiformis. We have suggested [Leys, D., Basran, J., and Scrutton, N. S. (2003) EMBO J. 22, 4038-4048] that these residues are involved in abstraction of a proton from the substrate amine group of dimethylglycine prior to C-H bond breakage and FAD reduction. To investigate this proposal, we have isolated two mutant forms of DMGO in which (i) His-225 is replaced with Gln-225 (H225Q mutant) and (ii) Tyr-259 is replaced with Phe-259 (Y259F mutant). Both mutant enzymes retain the ability to oxidize substrate, but the steady-state turnover of the Y259F mutant is attenuated more than 200-fold. Only modest changes in kinetic parameters are observed for the H225Q mutant during steady-state turnover. Stopped-flow studies indicate that the rate of FAD reduction in the Y259F enzyme is substantially impaired by a factor of approximately 1500 compared with that of the wild-type enzyme, suggesting a key role for this residue in the reductive half-reaction of the enzyme. The kinetics of FAD reduction in the H225Q enzyme are complex and involve three discrete kinetic phases that are attributed to different conformational states of this mutant, evidence for which is provided by crystallographic analysis. Neither the H225Q enzyme nor the Y259F enzyme stabilizes the FADH(2)-iminium charge-transfer complex observed previously in stopped-flow studies with the wild-type enzyme. Our studies are consistent with a key role for Tyr-259, but not His-225, in deprotonation of the substrate amine group prior to FAD reduction. We infer that residue His-225 is likely to modulate the acid-base properties of Tyr-259 by perturbing the pK(a) of Tyr-259 and thus fine-tunes the reaction chemistry to facilitate proton abstraction under physiological conditions. Our data are discussed in the context of the crystallographic data for DMGO and also in relation to contemporary mechanisms for flavoprotein-catalyzed oxidation of amine substrates.  相似文献   

9.
The oxidation-reduction potential of p-hydroxybenzoate hydroxylase (4-hydroxybenzoate, NADPH: oxygen oxidoreductase (3-hydroxylating), EC 1.14.13.2) from Pseudomonas fluorescens has been measured in the presence and absence of p-hydroxybenzoate using spectrocoulometry. The native enzyme demonstrated a two-electron midpoint potential of -129 mV during the initial reductive titration. The midpoint potential observed during subsequent oxidative and reductive titrations was -152 mV. This marked hysteresis is proposed to arise from the oxidation and reduction of the known air-sensitive thiol group on the enzyme (Van Berkel, W.J.H. and Müller, F. (1987) Eur. J. Biochem. 167, 35-46). Redox titrations of the enzyme in the presence of substrate showed a two-electron midpoint potential of -177 mV. No spectral or electrochemical evidence for the thermodynamic stabilization of any flavin semiquinone was observed in the titrations performed. These data show that the affinity of the apoenzyme for the hydroquinone form of FAD is 150-fold greater than for the oxidized flavin and that the substrate is bound to the reduced enzyme with a 3-fold lower affinity than to the oxidized enzyme. These data are consistent with the view that the stimulatory effect of substrate binding on the rate of enzyme reduction by NADPH is due to the respective geometries of the bound FAD and NADPH rather than to a large perturbation of the oxidation-reduction potential of the bound flavin coenzyme.  相似文献   

10.
Familial Alzheimer's disease (FAD) presenilin 1 (PS1) mutations give enhanced calcium responses upon different stimuli, attenuated capacitative calcium entry, an increased sensitivity of cells to undergo apoptosis, and increased gamma-secretase activity. We previously showed that the FAD mutation causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling, we studied the effect of two other FAD PS1 mutants (M146V and L250S) and two dominant negative PS1 mutants (D257A and D385N) on basal and carbachol-stimulated phosphoinositide (PI) hydrolysis and intracellular calcium concentrations ([Ca2+]i) in SH-SY5Y neuroblastoma cells. We found a significant increase in basal PI hydrolysis in PS1 M146V cells but not in PS1 L250S cells. Both PS1 M146V and PS1 L250S cells showed a significant increase in carbachol-induced [Ca2+]i as compared with nontransfected or wild type PS1 transfected cells. The elevated carbachol-induced [Ca2+]i signals were reversed by the PLC inhibitor neomycin, the ryanodine receptor antagonist dantrolene, the general aspartyl protease inhibitor pepstatin A, and the specific gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. The cells expressing either PS1 D257A or PS1 D385N had attenuated carbachol-stimulated PI hydrolysis and [Ca2+]i responses. In nontransfected or PS1 wild type transfected cells, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester and pepstatin A also attenuated both carbachol-stimulated PI hydrolysis and [Ca2+]i responses to levels found in PS1 D257A or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent.  相似文献   

11.
p-Hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens is a NADPH-dependent, FAD-containing monooxygenase catalyzing the hydroxylation of p-hydroxybenzoate to form 3,4-dihydroxybenzoate in the presence of NADPH and molecular oxygen. The mechanism of this three-substrate reaction was investigated in detail at pH 6.6, 4 degrees C, by steady state kinetics, stopped flow spectrophotometry, and equilibrium binding experiments. The initial velocity patterns are consistent with a ping-pong type mechanism which involves two ternary complexes between the enzyme and substrates. The first ternary complex is formed by random addition of p-hydroxybenzoate and NADPH to the enzyme, followed by the release of the first product (NADP+). The reduced enzyme . p-hydroxybenzoate complex now reacts with oxygen, the third substrate, to form the second ternary complex. The enzyme-bound p-hydroxybenzoate then reacts with the activated oxygen to give 3,4-dihydroxybenzoate which is released regenerating the oxidized enzyme for the next cycle. The binding of p-hydroxybenzoate to the oxidized enzyme to form a 1:1 complex causes large, characteristic spectral perturbations and fluorescence quenching. The dissociation constant for the enzyme . substrate complex was obtained by titrations in which absorbance and/or fluorescence quenching was measured. The binding constants of NADPH to the enzyme with and without p-hydroxybenzoate were determined kinetically by measuring the rate of reduction of the enzyme at different concentrations of NADPH. The reduction of the enzyme proceeds extremely slowly in the absence of p-hydroxybenzoate. The presence of the substrate causes a dramatic stimulation (140,000-fold) in the rate of enzyme reduction. The anaerobic reduction of the enzyme by NADPH in the presence of p-hydroxybenzoate produces a transient charge-transfer intermediate. On the basis of the proposed mechanism, the dissociation constants for p-hydroxybenzoate and NADPH as well as the Michaelis constants for all the three substrates were calculated from the initial velocity data. The agreement obtained between various kinetic parameters from the initial rate measurements and those calculated from the individual rate constants determined in rapid reactions, strongly supports the proposed mechanism for the p-hydroxybenzoate hydroxylase reaction.  相似文献   

12.
L Baciou  I Sinning  P Sebban 《Biochemistry》1991,30(37):9110-9116
The pH dependences of the rate constants of P+QB- (kBP) and P+QA- (kAP) charge recombination decays have been studied by flash-induced absorbance change technique, in chromatophores of three herbicide-resistant mutants from Rhodopseudomonas (Rps.) viridis, and compared to the wild type. P, QA, and QB are the primary electron donor and the primary and the secondary quinone acceptors, respectively. The triazine resistant mutants T1 (Arg L217----His and Ser L223----Ala), T3 (Phe L216----Ser and Val M263----Phe), and T4 (Tyr L222----Phe), all mutated in the QB binding pocket of the reaction center, have previously been characterized (Sinning, I., Michel, H., Mathis, P., & Rutherford, A. W. (1989) Biochemistry 28, 5544-5553). The pH dependence curves of kBP in T4 and the wild type are very close. This confirms that the sensitivity toward DCMU of T4 is mainly due to a structural rearrangement in the QB pocket rather than to a change in the charge distribution in this part of the protein. In T3, a 6-fold increase of kAP is observed (kAP = 4200 +/- 300 s-1 at pH 8) compared to that of the wild type (kAP = 720 +/- 50 s-1 at pH 8). We propose that the Val M263----Phe mutation induces a free energy decrease between P+QA- and P+I- (delta G zero IA) (I is the primary electron acceptor) of about 49 meV. The very different pH dependence of kAP in T3 suggests a substantial change in the QA pocket. The 2.5 times increase of kAP above pH 9.5 in the wild type is no longer detected in T3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In the crystal structure of native p-hydroxybenzoate hydroxylase, Ser212 is within hydrogen bonding distance (2.7 A) of one of the carboxylic oxygens of p-hydroxybenzoate. In this study, we have mutated residue 212 to alanine to study the importance of the serine hydrogen bond to enzyme function. Comparisons between mutant and wild type (WT) enzymes with the natural substrate p-hydroxybenzoate showed that this residue contributes to substrate binding. The dissociation constant for this substrate is 1 order of magnitude higher than that of WT, but the catalytic process is otherwise unchanged. When the alternate substrate, 2,4-dihydroxybenzoate, is used, two products are formed (2,3,4-trihydroxybenzoate and 2,4, 5-trihydroxybenzoate), which demonstrates that this substrate can be bound in two orientations. Kinetic studies provide evidence that the intermediate with a high extinction coefficient previously observed in the oxidative half-reaction of the WT enzyme with this substrate is composed of contributions from both the dienone form of the product and the C4a-hydroxyflavin. During the reduction of the enzyme-2,4-dihydroxybenzoate complex by NADPH with 2, 4-dihydroxybenzoate, a rapid transient increase in flavin absorbance is observed prior to hydride transfer from NADPH to FAD. This is direct evidence for movement of the flavin before reduction occurs.  相似文献   

14.
Monoamine oxidase is a flavin-containing enzyme located at the mitochondrial outer membrane that catalyzes the oxidative deamination of amines. To investigate the role of tyrosine residues near the FAD-binding site, Cys-406, of monoamine oxidase A, the tyrosine residues at posiyions 402, 407, and 410 were indurdually replaced with alanine or phenylalanine and the effects of the mutations on catalytic activity, FAD binding, and enzyme structure were examined. Half or fewer of the mutant proteins incorporated FAD. The mutation of Tyr-407 to alanine led to an almost completely loss of catalytic activity for serotonin, PEA, tyramine, and tryptamine. A substantial decrease in the catalytic activity was also observed with the enzymes mutated at Tyr-402 and Tyr-410 to alanine, although the effect of the latter mutation was much less. All these mutants were sensitive to trypsin treatment of the purified enzyme, while the wild type enzyme was resistant to treatment. On the other hand, substitution of Tyr-402 or Tyr-407 with phenylalanine had little effect on these properties. Taken together, we conclude that tyrosine residues near Cys-406 may be form a pocket to facilitates FAD incorporation, the catalytic center, and a stable conformation, probably through interactions among the aromatic rings of the tyrosine residues and FAD.  相似文献   

15.
To test structural and mechanistic proposals about bacteriorhodopsin, a series of analogues with single amino acid substitutions has been studied. Mutants in the proposed helix F of bacteriorhodopsin were chosen for investigation because of the probable interaction of this part of the protein with the retinal chromophore. Seven mutants of the bacteriorhodopsin gene were constructed by site-directed mutagenesis, and the gene products were expressed in Escherichia coli. The resulting mutant proteins were purified and assayed for their ability to interact with retinal in phospholipid/detergent micelles to form a bacteriorhodopsin-like chromophore. Four mutants, Ser-183----Ala, Tyr-185----Phe, Ser-193----Ala, and Glu-194----Gln, bound retinal to give pigments with absorption maxima approximately the same as the wild type. Three mutant opsins bound retinal to give chromophores that were blue-shifted relative to the wild type. Two Trp----Phe substitutions at positions 182 and 189 gave absorption maxima of 480 and 524 nm, respectively, and the mutant Pro-186----Leu gave a pigment with an absorption maximum of 470 nm. However, none of the amino acid substitutions eliminated the ability of the mutant bacteriorhodopsin to pump protons in response to illumination.  相似文献   

16.
A ferrous heme-NO complex builds up in rat neuronal NO synthase during catalysis and lowers its activity. Mutation of a tryptophan located directly below the heme (Trp(409)) to Phe or Tyr causes hyperactive NO synthesis and less heme-NO complex buildup in the steady state (Adak, S., Crooks, C., Wang, Q., Crane, B. R., Tainer, J. A., Getzoff, E. D., and Stuehr, D. J. (1999) J. Biol. Chem. 274, 26907-26911). To understand the mechanism, we used conventional and stopped flow spectroscopy to compare kinetics of heme-NO complex formation, enzyme activity prior to and after complex formation, NO binding affinity, NO complex stability, and its reaction with O(2) in mutants and wild type nNOS. During the initial phase of NO synthesis, heme-NO complex formation was 3 and 5 times slower in W409F and W409Y, and their rates of NADPH oxidation were 50 and 30% that of wild type, probably due to slower heme reduction. NO complex formation slowed NADPH oxidation in the wild type by 7-fold but reduced mutant activities less than 2-fold, giving mutants higher final activities. NO binding kinetics were similar among mutants and wild type, although in ferrous W409Y (and to a lesser extent W409F) the 436-nm NO complex converted to a 417-nm NO complex with time. Oxidation of the ferrous heme-NO complex to ferric enzyme was 7 times faster in Trp(409) mutants than in wild type. Thus, mutant hyperactivity derives from slower formation and faster decay of the heme-NO complex. Together, these minimize partitioning into the NO-bound form.  相似文献   

17.
In ferredoxin-NADP(+) reductase (FNR), FAD is bound outside of an anti-parallel beta-barrel with the isoalloxazine lying in a two-tyrosine pocket. To elucidate the function of the flavin si-face tyrosine (Tyr-89 in pea FNR) on the enzyme structure and catalysis, we performed ab initio molecular orbital calculations and site-directed mutagenesis. Our results indicate that the position of Tyr-89 in pea FNR is mainly governed by the energetic minimum of the pairwise interaction between the phenol ring and the flavin. Moreover, most of FNR-like proteins displayed geometries for the si-face tyrosine phenol and the flavin, which correspond to the more negative free energy theoretical value. FNR mutants were obtained replacing Tyr-89 by Phe, Trp, Ser, or Gly. Structural and functional features of purified FNR mutants indicate that aromaticity on residue 89 is essential for FAD binding and proper folding of the protein. Moreover, hydrogen bonding through the Tyr-89 hydroxyl group may be responsible of the correct positioning of FAD and the substrate NADP(+)  相似文献   

18.
Para-hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor, FAD, by NADPH in response to binding p-hydroxybenzoate to the enzyme, and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the isoalloxazine ring within the protein structure. In this paper, we examine the effect of increased positive electrostatic potential in the active site upon the catalytic process with the enzyme mutation, Glu49Gln. This mutation removes a negative charge from a conserved buried charge pair. The properties of the Glu49Gln mutant enzyme are consistent with increased positive potential in the active site, but the mutant enzyme is difficult to study because it is unstable. There are two important changes in the catalytic function of the mutant enzyme as compared to the wild-type. First, the rate of hydroxylation of p-hydroxybenzoate by the transiently formed flavin hydroperoxide is an order of magnitude faster than in the wild-type. This result is consistent with one function proposed for the positive potential in the active site-to stabilize the negative C-4a-flavin alkoxide leaving group upon heterolytic fission of the peroxide bond. However, the mutant enzyme is a poorer catalyst than the wild-type enzyme because (unlike wild-type) the binding of p-hydroxybenzoate is a rate-limiting process. Our analysis shows that the mutant enzyme is slow to interconvert between conformations required to bind and release substrate. We conclude that the new open structure found in crystals of the Arg220Gln mutant enzyme [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613] is integral to the process of binding and release of substrate from oxidized enzyme during catalysis.  相似文献   

19.
Directed mutagenesis of the beta-subunit of F1-ATPase from Escherichia coli   总被引:7,自引:0,他引:7  
Oligonucleotide-directed mutagenesis was used to generate six mutant strains of Escherichia coli which had the following specific amino acid substitutions in the beta-subunit of F1-ATPase: (i) Lys-155----Gln; (ii) Lys-155----Glu; (iii) Gly-149----Ile; (iv) Gly-154----Ile; (v) Tyr-297----Phe;(vi) Tyr-354----Phe. The effects of each mutation on growth of cells on succinate plates or limiting (3 mM) glucose and on cell membrane ATPase activity and ATP-driven pH gradient formation were studied. The results showed Lys-155 to be essential for catalysis, as has been predicted previously from sequence homology and structural considerations; however, the results appear to contradict the hypothesis that Lys-155 interacts with one of the substrate phosphate groups because the Lys-155----Glu mutation was less detrimental than Lys-155----Gln. Gly-149 and Gly-154 have been predicted to be involved in essential conformational changes in F1-ATPase by virtue of their position in a putative glycine-rich flexible loop structure. The mutation of Gly-154----Ile caused strong impairment of catalysis, but the Gly-149----Ile mutation produced only moderate impairment. The two tyrosine residues chosen for mutation were residues which have previously received much attention due to their being the sites of reaction of the inactivating chemical modification reagents 4-chloro-7-nitrobenzofurazan (Tyr-297) and p-fluorosulfonylbenzoyl-5'-adenosine (Tyr-354). We found that mutation of Tyr-297----Phe caused only minor impairment of catalysis, and mutation of Tyr-354----Phe produced no impairment. Therefore, a direct role for either of these tyrosine residues in catalysis is unlikely.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号