首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of inositol hexaphosphate (IHP) and a second allosteric effector, bezafibrate, on the spin-state equilibria of the mixed-spin derivatives of ferric human hemoglobin A are examined. Changes in spin-state equilibrium are monitored by measuring absorption spectra in the visible region (460-700 nm) as well as by direct measurements of magnetic susceptibility by means of a superconducting fluxmeter. The addition of IHP at pH 6.5 results in a measurable shift in the spin equilibria of these derivatives toward higher spin. However, the addition of bezafibrate in the presence of IHP results in still larger shifts toward the high-spin form. The changes in the free energies of the spin-state equilibria resulting from the combination of these two effectors are similar in magnitude to that which results from the R-state to T-state transition in carp hemoglobin.  相似文献   

2.
Autooxidation of carp hemoglobin has been measured from 4--25 degrees C with and without P6-inositol. The rate was accelerated by the increase of proton concentration and/or the addition of P6-inositol. As the rate increases the kinetics become more complex. In acidic media with P6-inositol, the autooxidation is initially rapid which becomes slower subsequently but eventually proceeds very fast. The activation energy for autooxidation is about 19 kcal. mol-1. The complicated kinetics are partly attributable to the fact that carp hemoglobin is incompletely oxygenated under these conditions and that various liganded molecules including partially oxidized species have different susceptibilities toward autooxidation.  相似文献   

3.
1. The oxygen binding properties of the hemoglobin from the Lesser Rorqual, Balaenoptera acutorostrata, has been investigated with respect to the possible effects of organic phosphates on gas transport in arctic environments. 2. The intrinsic oxygen affinity of the hemoglobin is high and strongly modulated by the effects of organic phosphates. 3. In the absence of organic phosphates, the temperature sensitivity of oxygen binding expressed by the heat of oxygenation, delta H, is -16.2 kcal/mol when corrected for the heat of oxygen in solution. 4. In the presence of organic phosphates there is a marked decrease in the temperature sensitivity delta H approximately -5 kcal/mol). 5. This feature is of great importance for oxygen unloading in the flippers and the tail, where the temperature is lower than the trunk of the whale. 6. Furthermore the organic phosphates strongly increase the Bohr coefficient, delta log P50/delta pH, from less than -0.3 in stripped hemoglobin to about -1.5 when the hemoglobin is saturated with P6-inositol. 7. This feature may be of great physiological importance by reducing the CO2 tension and acidosis after a prolonged dive.  相似文献   

4.
The tetramer-dimer equilibria of various forms of methemoglobin have been measured by sedimentation equilibrium to test the hypothesis of Perutz that high spin derivatives can be switched by inositol hexaphosphate (Inos-P6) from the R state to the T state more readily than low spin derivatives. Since transitions from the R state to the T state are accompanied by a decrease in the tetramer-dimer dissociation constant (K4,2), this parameter is a quantitative indicator of the conformational state. Measurements of K4,2 were performed using an analytical ultracentrifuge with absorption optics and a scanner-computer system. Statistical analysis of the sedimentation data indicated that the stoichiometry if Inos-P6 binding is 1 molecule/hemoglobin tetramer and 2 molecules/hemoglobin dimer. The apparent affinity of the dimer sites for Inos-P6 is much lower than the corresponding value for the tetramer site. As a result of the stoichiometries, at low concentrations Inos-P6 shifts the tetramer-dimer equilibrium in favor of the tetramer, but at high concentrations Inos-P6 shifts the equilibrium in favor of the dimer. Te tetramer binding site for Inos-P6 of various liganded forms of hemoglobin appears to be the same as has been established for deoxyhemoglobin, since the effect of Inos-P6 on subunit dissociation is reduced in pyridoxylated derivatives. Values of K4,2 for aquo-, azido- and cyanomethemoglobin in 0.01 M 2,2-bis(hydroxymethyl)-2,2',2'-nitroethanol buffer, pH 6.0/0.1 M NaCl, are all near 2 X 10(-5) M. Upon addition of 50 muM Inos-P6 the values of K4,2 for all three forms are shifted to near 10(-9) M. Since the aquo derivative is high spin, while the azido and cyano derivatives are low spin, the similarity of values for the derivatives in the presence and absence of Inos-P6 indicate that the changes in K4,2 are not spin-spin state dependent. For another high spin derivative, fluoromethemoglobin, such high concentrations of NaF are required that ionic strength effects are encountered. When data at several NaF concentrations are extrapolated to 0.1 M NaF to correct for the ionic strength effects, values of K4,2 of 7 X 10(-6) M and 10(-8) M are obtained for solutions in the absence and in the presence of 50 muM Inos-P6, respectively. Therefore the results with the fluoro derivative, in conjunction with the other forms of methemoglobin, support the view that high spin derivatives do not exhibit a greater response to Inos-P6 than low spin derivatives.  相似文献   

5.
Ferricytochrome c' from Rhodobacter capsulatus was investigated by 1H-NMR, EPR and optical spectroscopies. A haem-linked ionisation, occurring with a pKa of 8.4 at 25 degrees C, was observed and assigned to the ionisation of the axial histidine ligand by comparison with data for related proteins. At pH values below this pKa the spin-state of the haem Fe3+ is shown to be a quantum mechanically admixed S = 3/2, 5/2 state. Above the pKa the Fe3+ is high-spin. EPR studies of intact cells grown photoheterotrophically reveal that in situ cytochrome c' exists largely in the ferrous state. Upon the addition of [Fe(CN)6]3- the protein becomes oxidised and EPR spectra reveal that the Fe3+ spin-state is a quantum mechanically admixed S = 3/2, 5/2 state. These data indicate that the unusual spin-state of ferricytochrome c' is not a consequence of changes to the protein on its isolation, as had been suggested previously. They also indicate that in situ cytochrome c' is located in an environment with a pH less than 7.  相似文献   

6.
Possible problems in measuring the first Adair constant, K1, from accurate oxygen equilibrium curves have been investigated. Of these only the presence of small amounts of CO-hemoglobin or hemoglobin dimers had a significant effect. The former can be eliminated by treatment with oxygen, the latter by measuring the concentration-dependence of K1 or working at high protein concentrations. K1 values have been measured for normal hemoglobin at pH 7 and 9, hemoglobin specifically reacted with cyanate at Val 1alpha (alphac2beta2) and des(His 146beta) hemoglobin at pH 7. K1 is equal to KT, the oxygen affinity of the T state of hemoglobin, for all these hemoglobins and was increased in all of them when compared to normal hemoglobin at pH 7. This shows that the breakage of the Bohr group salt bridges by increasing pH or specific modification changes KT. Hence the Bohr group salt bridges break on ligation of the T state and are partially responsible for the free energy of cooperativity.  相似文献   

7.
1. The transient kinetics of reduction of the 470-nm absorption band in benzylamine oxidase by substrate at different pH values between 6 and 10 have been studied by stopped-flow techniques, and substituent effects on kinetic parameters for the reduction process have been examined using a series of ring-substituted benzylamine derivatives as the substrates. 2. Reduction of the enzyme by substrate takes place in two kinetically distinguishable steps, with the intermediate formation of an enzyme-substrate complex in which the substrate appears to be covalently bound through its amino group to the prosthetic group of the enzyme, possibly in the form of an amine-pyridoxal Schiff-base. 3. The apparent stability of the enzyme-substrate complex shows no obvious dependence on the electronic properties of the amine substrates, but is strongly pH-dependent in a way suggesting that substrate-binding involves the non-protonated amines, exclusively, and requires the presence of the acid form of an ionizing group in the enzyme with apparent pKa of 8.8. 4. Reduction of the enzymatic 470-nm chromophore and release of the aldehyde product of the catalytic process are rate-limited by the same monomolecular reaction step involving the enzyme-substrate complex. Rate constants for the rate-limiting reaction exhibit no significant dependence on pH between 6 and 10, but correlate with Hammett sigma-values for the ring-substituted benzylamine derivatives tested, yielding a phi-value of + 0.3.  相似文献   

8.
Some of inositol derivatives have been reported to help the action of insulin stimulating glucose uptake in skeletal muscle cells. Rat L6 myotubes were employed in an attempt to develop an in vitro model system for investigation of the possible insulin-like effect of eight inositol derivatives, namely allo-inositol, d-chiro-inositol l-chiro-inositol, epi-inositol, muco-inositol, myo-inositol, scyllo-inositol and d-pinitol. At a higher concentration of 1 mM seven inositol derivatives other than myo-inositol were able to stimulate glucose uptake, while at 0.1 mM only d-chiro-inositol, l-chiro-inositol, epi-inositol and muco-inositol could induce glucose uptake, indicating their significant insulin-mimetic activity. Immunoblot analyses revealed that at least d-chiro-inositol, l-chiro-inositol, epi-inositol, muco-inositol and d-pinitol were able to induce translocation of glucose transporter 4 (GLUT4) to plasma membrane not only in L6 myotubes but also in skeletal muscles of rats ex vivo. These results demonstrated that L6 myotubes appeared efficient as an in vitro system to identify inositol derivatives exerting an insulin-like effect on muscle cells depending on the induced translocation of GLUT4.  相似文献   

9.
myo-Inositol is incorporated into phosphatidylinositol by an exchange reaction associated with the endoplasmic reticulum fraction isolated from post-germination castor bean endosperm. The reaction requires Mn2+, has a pH optimum of 8.0, an apparent Km for myo-inositol of 26 micromolar, and is stimulated about 15-fold by certain cytidine derivatives. The cytidine derivatives appear to be converted to CMP, which may be the only active stimulator. These optimal exchange reaction conditions, both with and without CMP, differ from those for cytidine-5′ -diphosphodiglyceride: myo-inositol transferase (EC 2.7.8), so the exchange does not appear to be a reversal of the transferase. This conclusion is augmented by the low rates of CDP-diglyceride formation from cytidine derivatives when compared to the high rate of myo-inositol incorporation into phosphatidylinositol in the presence of the same cytidine derivatives and identical reaction conditions.  相似文献   

10.
The effect of external parameters on the relaxation process of the hemochrome-type non-equilibrium conformation in partially reduced methemoglobin has been investigated. The relaxation of the intermediate ferrous low-spin state to the high-spin equilibrium conformation of hemoglobin appears to be facilitated particularly by protons and phosphate ions. In addition to studying the spin-state transition in aquomethemoglobin we have also studied it in complexes of the heme group in methemoglobin with fluoride, azide and cyanide anions.  相似文献   

11.
The variation of magneto-optical rotatory dispersion with pH for carp deoxyhemoglobin in the presence and absence of inositol hexaphosphate was interpreted as a pH-induced allosteric transition between the structures of high and low ligand affinity (the R and T states in terms of the two state model of cooperativity). Increasing the pH from 6 to 11 causes a decrease in the fraction of molecules in the T state from 1 to 0.65. In the absence of inositol hexaphosphate the pH dependence of this fraction has a midpoint at 7.8, addition of inositol hexaphosphate shifts this midpoint by 1.5 units toward high pH. From the analysis of the data obtained and the pH dependences of functional properties (Tan, A.L., Noble, R.W. and Gibson, Q.H. (1973) J. Biol. Chem. 248, 2880-2888) the parameters of the two state model of cooperativity for carp hemoglobin were estimated.  相似文献   

12.
The nitrosyl derivatives of Annelidae Glossoscolex paulistus hemoglobin (an earth worm erythrocruorin (Ec AGp)) and Aplysia brasiliana myoglobin (Mb Apb) are studied using ESR spectroscopy. These two proteins have a quite similar ESR spectra at 100 K, but a different temperature behaviour. The temperature dependence of the nitrosyl Mb Apb spectrum is in good agreement with the Boltzmann distribution. In the case of nitrosyl-Ec AGp, the results are explained by the existence of two types of spectrum in thermodynamic equilibrium, with delta H = 9.08 kJ/mol, delta S = 47.15 J/mol and T1/2 = 193 K. There is a great similarity of the nitrosyl-Ec AGp spectra with those reported for elephant myoglobin, suggesting the presence of the same heme environment with a glutamine residue in the distal site. The pH dependence of the spectrum of nitrosyl-Mb Apb shows that the affinity of nitrosyl binding is higher at high pH (7.3) than at low pH (4.6). The ESR parameters are the same for these two pH values.  相似文献   

13.
We have determined for the first time the equilibrium constant, Keq, for the reaction of Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoate), with the CysF9[93]beta sulfhydryl groups of the hemoglobins of the domestic cat. In the pH range 5.6 to 9.0 Kequ varies over four orders of magnitude--between ca 10 and 10(-3)--for all hemoglobin derivatives. Using these Kequ values and published data on the dependence of the apparent second order forward rate constant, kf, on pH we have calculated the apparent second order reverse rate constant, kr, as a function of pH. This parameter increases strongly with pH, particularly above pH 7.5. Quantitative analyses of the pH dependence profiles of log10kr indicate that the reverse reaction is coupled to the ionization of two groups on the protein with pKas of 7.2+/-0.2 and 9.4+/-0.1 in the major hemoglobin and 6.7+/-0.3 and 8.4+/-0.1 in the minor hemoglobin.  相似文献   

14.
A procedure commonly used to transform native adult human hemoglobin (Hb) into a physiological oxygen carrier consists of a pyridoxylation of the protein to lower its oxygen affinity, followed by its polymerization in the presence of glutaraldehyde, with or without further reduction, to increase its circulating half-life. This series of reactions yields derivatives presenting a great molecular heterogeneity that have to be fractionated for use in vivo. Hemoglobin derivatives with low oxygen affinity and a narrow distribution of molecular weights were obtained by linking a dextran polyaldehydic derivative to deoxyhemoglobin at pH 8. From oxygen-binding measurements carried out in the presence of inositolhexaphosphate, a strong effector of hemoglobin, it appeared that the allosteric site of hemoglobin was blocked, probably by crosslinking bonds, which stabilizes its deoxy structure. On the other hand, when the reaction was performed in the presence of inositolhexaphosphate, the resulting conjugates exhibited an oxygen affinity identical to that of unmodified hemoglobin. After treatment with NaBH4, the polymer-hemoglobin derivatives were stable and possessed a reversible oxygen-carrying capacity similar to that of blood. The conjugates prepared from oxyhemoglobin all possessed a lower P50 than native hemoglobin whatever the reaction conditions.  相似文献   

15.
Sickle cell nitrosyl hemoglobin was examined for gelation by an ultracentrifugal method previously described (Briehl &; Ewert, 1973) and by birefringence. In the presence of inositol hexaphosphate gelation which exhibited the endothermic temperature dependence seen in gels of deoxyhemoglobin S was observed by both techniques. In the absence of inositol hexaphosphate no gelation was observed, nor did nitrosyl hemoglobin A exhibit gelation. On the assumption that gelation is dependent on the deoxy or T (low ligand affinity) as opposed to the oxy or R (high ligand affinity) quaternary structure this supports the conclusion that nitrosyl hemoglobin S in inositol hexaphosphate assumes the T structure, in contrast to the other liganded ferrohemoglobin derivatives oxy and carbon monoxide hemoglobin. Assuming further that the quaternary structures and isomerizations are the same in hemoglobins A and S it can also be concluded that nitrosyl hemoglobin A in inositol hexaphosphate assumes the T state. Since no gelation was seen in stripped nitrosyl hemoglobin S, inositol hexaphosphate serves to effect an R to T switch in this derivative. Thus R-T isomerization in nitrosyl hemoglobin occurs without change in ligand binding at the sixth position of the heme group confirming the conclusion of Salhany (1974) and Salhany et al. (1974).Lowering of the pH toward 6 favors gelation of NO hemoglobin S as it does of deoxy and aquomethemoglobin S (Briehl &; Ewert, 1973,1974), consistent with a favoring of the T structure due to strengthening of the interchain salt bridges and the binding of inositol hexaphosphate and/or changes in site-to-site interactions on which gelation depends.  相似文献   

16.
The infrared spectra of the carbomonoxy derivatives of the hemoglobin components I and IV from trout have been measured in the CO stretching frequency region using a high resolution infrared spectrometer. The CO stretching frequency of Hb I CO is very close to that of carbomonoxy human hemoglobin and is pH-independent. In contrast, the CO stretching frequency of Hb IV CO is higher and shows a small but significant pH dependence in the range 6.2-7.8. These results point to a decreased strength of the iron-CO bond in Hb IV CO at low pH, in agreement with the conclusions drawn from the reported difference spectra of Hb IV CO as a function of pH.  相似文献   

17.
The proton nuclear magnetic resonance spectra of carp hemoglobin (Hb) in the unligated deoxy and ligated met-cyano and met-azido forms have been recorded as a function of pH and upon addition of inositol hexaphosphate. All protein derivatives yield spectra that are consistent with appreciable molecular heterogeneity in the heme cavity. The pattern of heme methyl hyperfine shifts in carp met-cyano Hb indicates that this heterogeneity arises from the presence of heme rotational disorder, as found in native myoglobin. In carp deoxy Hb, the T----R transition manifests itself in nuclear magnetic resonance spectral changes similar to those found in modified human Hb species; namely, a decrease in heme methyl and an increase in proximal histidyl imidazole ring NH hyperfine shifts indicative of a strengthening of the iron-histidine bond. The met-cyano complex exhibits heme methyl hyperfine shifts similar to the analogous R state complex of Hb A; addition of inositol hexaphosphate did not give evidence for a quaternary structural change. Carp met-azido Hb in the R state also closely resembles the electronic structure of the HbA complex. Addition of inositol hexaphosphate appeared to effect at least a partial conversion to a T state with larger high-spin content than that observed for T state human metHbN3.  相似文献   

18.
We have studied the binding of inositol pentaphosphate (IPP) to the hemoglobins from two species of goose living at low and high altitudes, using the proton absorption method. Measurements were done at 25 and 37 degrees C in a pH range between 6.0 and 8.8. The bird hemoglobins show a high affinity and a binding stoichiometry of 1 IPP molecule/hemoglobin tetramer both in the ligated and unligated state, indicating the same binding site for IPP in oxy- and deoxyhemoglobin. The results indicate that the interaction of IPP with both geese hemoglobins is very similar. For the deoxyhemoglobins of both species the IPP-binding constant shows a strong pH dependence extending over a wide pH range (i.e. +/- 2 x 10(6) M at pH 8.8 and +/- 6 x 10(10) M at pH 6.0). The binding constant of IPP for the oxyhemoglobins shows a much weaker pH dependence (i.e. +/- 4 x 10(4) M at pH 8.8 and +/- 3 x 10(6) M at pH 6.0), indicating that the interaction of IPP with the goose hemoglobin is strongly dependent on the state of ligation of the protein. The IPP binding constants for the oxy- and deoxyhemoglobins are found to be in good agreement with the IPP-induced change in oxygen affinity of both hemoglobins as estimated from oxygen binding curves.  相似文献   

19.
The pH dependence of oxygen affinity of hemoglobin (Bohr effect) is due to ligand-linked pK shifts of ionizable groups. Attempt to identify these groups has produced controversial data and interpretations. In a further attempt to clarify the situation, we noticed that hemoglobin alkylated in its liganded form lost the Bohr effect while hemoglobin alkylated in its unliganded form showed the presence of a practically unmodified Bohr effect. In spite of this difference, analyses of the extent of alkylation of the two compounds failed to identify the presence of specific preferential alkylations. In particular, the alpha 1 valines and beta 146 histidines appeared to be alkylated to the same extent in the two proteins. Focusing our attention on the effect of the anions on the functional properties of hemoglobin, we measured the Bohr effect of untreated hemoglobin in buffers made with HEPES [N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid], MES [2-(N-morpholino)ethanesulfonic acid], and MOPS [3-(N-morpholino)propanesulfonic acid], which being zwitterions do not need addition of chlorides or other anions for reaching the desired pH. The shape acquired by the Bohr effect curves, either as pH dependence of oxygen affinity or as pH dependence of protons exchanged with the solution, was irreconcilable with that of the Bohr effect curves in usual buffers. This indicated the relevance of solvent components in determining the functional properties of hemoglobin. A new thermodynamic model is proposed for the Bohr effect that includes the interaction of hemoglobin with solvent components. The classic proton Bohr effect is a special case of the new theory.  相似文献   

20.
The electron paramagnetic resonance(EPR) signals of Fusarium lipoxygenase were measured at liquid nitrogen temperature in the presence or absence of substrate, linoleic acid. The spin-state exchange of heme iron in Fusarium lipoxygenase from a low to high spin-state by the addition of linoleic acid was observed. The addition of linoleic acid to the enzyme at pH 9.0 gave rise to the appearance of EPR lines at g=5.92 and 3.58, while at pH 12.0, lines at g=6.12 and 3.41 were newly appeared. At the same time, the resonance at g=4.31 was increased both at pH 9.0 and 12.0 in the presence of linoleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号