首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to gain insight into the factors that affect the permeation of volatiles through starch films. These films were obtained by casting gelatinized starch/water/glycerol mixtures. The films were dried and conditioned under different conditions (temperature and relative humidity) resulting in films that vary in the degree of starch crystallinity and glycerol and water content. The permeation of two model volatiles (carvone and diacetyl) at 20 degrees C and at 30, 60, or 90% relative humidity (RH) was analyzed gravimetrically. Further, the solubility of the two model compounds (under conditions where the permeation experiments were carried out) was determined. From the obtained permeation and solubility data, the diffusion coefficients of these compounds in the different starch films were calculated. The crystallinity in the starch films increased with increasing water content of the films during preparation. The water content of the resulting films in turn increased with increasing glycerol and when the films were exposed to a higher RH during drying or conditioning. For films with the same composition, the flux for diacetyl was greater than for carvone. The solubilities of diacetyl and carvone were slightly dependent on the properties of the films. It was found that with increasing starch crystallinity the diffusion coefficient for both compounds decreases, which is probably due to the impermeability of starch crystallites. Interestingly, in films with about the same extent of crystallinity, the diffusion can be described with the free volume model, with water and glycerol determining the amount of free volume.  相似文献   

2.
A series of wheat-gluten-based nanocomposites were produced by dispersing Cloisite-30B nanoclay particles into plasticized wheat gluten systems under thermal processing conditions. The exfoliation of the nanoparticles as confirmed by wide-angle X-ray diffraction and transmission electron microscopy has resulted in significant enhancement of the mechanical properties for both deamidated proteins and vital gluten systems under 50% relative humidity (RH). Such strength improvement was also pronounced for wheat gluten (WG) systems under a high humidity condition (RH = 85%). A similar level of further strength enhancement was obtained for the WG systems that had been strengthened by blending with poly(vinyl alcohol) (PVA) and cross-linking with glyoxal. Although the nanoclay modifier, a quaternary ammonium, caused an additional plasticization to the materials, the interactions between the gluten matrix and the nanoparticles were predominant in all of these nanocomposites. A solid-state NMR study indicated that the polymer matrix in all of these nanocomposites displayed a wide distribution of chain mobilities at a molecular level (less than 1 nm). The interactions between the nanoparticles and the natural polymer matrix resulted in motional restriction for all components in the mobile phases including lipid, plasticizers, and plasticized components, although no significant influence from the nanoparticles was obtained in the mobility of the rigid phases (unplasticized components). On a scale of 20-30 nm, the deamidated protein systems tended to be homogeneous. The small domain size of the matrix resulted in modifications of the spin-lattice relaxation of these systems via spin diffusion. The residual starch seemed to remain in a relatively larger domain size in WG systems. The nanoparticles could enhance the miscibility between the starch and the other components in the WG nanocomposite, but such miscibility enhancement did not occur in the WG/PVA blend and the cross-linked system. These polymer matrixes were still heterogeneous on a scale of 20-30 nm.  相似文献   

3.
The release of volatile compounds from a cream style dressing, which consisted of a thickening agent dispersed in the water phase of an oil in water (o/w) type of emulsion, was studied by the purge-and-trap (PT), dynamic head space mastication (DHM) and dynamic headspace (DH) model systems for diacetyl and 2-heptanone as two volatile compounds. Big differences were detected in the quantity of volatiles released by the three models for both diacetyl and 2-heptanone: PT released the most, followed by DHM and DH. Nitrogen gas bubbling in PT and plunger up-and-down motion in DHM mimic mouth movements and promoted volatile release more than DH. The quantity of volatiles released depended on the nitrogen gas flow rate and isolation period with both the PT and the DHM model. Static headspace measurements indicated that no interaction occurred between the volatiles and the dispersion thickening agent, nor between the volatiles and protein of saliva.  相似文献   

4.
Lysosomal enzyme release from human monocytes was evaluated in response to opsonized zymosan, opsonized sheep erythrocytes, and latex beads. Monocytes were found to release lysosomal enzymes immediately upon challenge with all three phagocytosable particles. Cytochalasin B enhanced beta-glucosaminidase release from mononuclear cells challenged with opsonized zymosan or opsonized red blood cells, but inhibited the response to latex particles. Lysosomal enzyme release was found to be independent of protein synthesis, and in the absence of cytochalasin B required the stimulus to be presented either as a phagocytosable particle or immobilized on a surface. The kinetics of enzyme release and phagocytosis were also examined and found to be different, lending support to the hypothesis that lysosomal enzyme release may be a physiologic response to a biologic stimulus in vivo and not simply an "accidental" consequence of an ongoing phagocytic event.  相似文献   

5.
A high molecular weight intracellular enzyme of Bacillus brevis ATCC 9999 is released when the organism is disrupted by sonication of homogenization. However, both processes also degrade the enzyme. Assays for protein release and specific enzymatic activity of the released protein indicate that both release and degradation can be represented by first-order kinetic models. Utilization of the difference between the kinetics of release and degradation allows optimization in the recovery of this enzyme for both the sonication and homogenization processes.  相似文献   

6.
French DL  Arakawa T  Li T 《Biopolymers》2004,73(4):524-531
Spray drying is a way to generate protein solids (powders), which is also true for lyophilization. Sugars are used to protect proteins from conformational changes and chemical degradations arising from drying processes and storage conditions such as the humidity. The influence of trehalose and humidity on the conformation and hydration of spray-dried recombinant human granolucyte colony stimulating factor (rhG-CSF) and recombinant consensus interferon-alpha (rConIFN) was investigated using Fourier transform IR spectroscopy. The spectral analysis of spray-dried powders in the amide I region demonstrated that trehalose stabilized the alpha-helical conformation of both rhG-CSF and rConIFN proteins. Exposure of the pure protein powders to 33% relative humidity (RH) resulted in the formation of beta sheets and loss of turns but no change in alpha-helical structure. Trehalose reduced the magnitude of the changes in beta sheets and turns. Exposure of the pure protein powders to 75% RH resulted in the loss of alpha-helical conformation with a corresponding increase in beta structures (beta sheets and turns). Trehalose did not protect proteins from the loss of alpha-helical structures, but it reduced the formation of antiparallel beta sheets. Hydrogen-deuterium exchange (H-D exchange) was used to further characterize these hydration-induced conformational changes. At 33% RH the percent exchange of the protein decreased with increasing trehalose content, indicating a greater protection of the protein from H-D exchange by a higher concentration of trehalose. Such protection correlates with decreased conformational changes of the protein by trehalose at this humidity. At 75% RH the degree of H-D exchange of the protein was insensitive to the powder composition in all powders. Surprisingly, the H-D exchange of trehalose was low at about 20-25%, which was nearly independent of the protein/trehalose ratio and humidity, indicating that the exchangeable protons on trehalose molecules are highly protected in protein-containing powders. The observed protein hydration is related to the effect of trehalose on the conformational changes of the protein under humidity.  相似文献   

7.
The release of propranolol hydrochloride from matrix tablets with hydroxy propyl methyl cellulose (HPMC K15M) or KollidonSR at different concentrations was investigated with a view to developing twice daily sustained release dosage form. A hydrophilic matrix-based tablet using different concentrations of HPMC K15M or KollidonSR was developed using direct compression technique to contain 80 mg of propranolol hydrochloride. The resulting matrix tablets prepared with HPMC K15M or KollidonSR fulfilled all the official requirements of tablet dosage forms. Formulations were evaluated for the release of propranolol hydrochloride over a period of 12 h in pH 6.8 phosphate buffer using USP type II dissolution apparatus. Propranolol hydrochloride and pure KollidonSR or HPMC K15M compatibility interactions was investigated by using Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopic and DSC studies revealed that there was no well defined chemical interaction between propranolol hydrochloride with KollidonSR or HPMC K15M. Tablets were exposed to 40 degrees C/75% of RH in open disc for stability. The in vitro drug release study revealed that HPMC K15 at a concentration of 40% of the dosage form weight was able to control the release of propranolol hydrochloride for 12 h, exhibit non-Fickian diffusion with first-order release kinetics where as at 40% KollidonSR same dosage forms show zero-order release kinetics. In conclusion, the in vitro release profile and the mathematical models indicate that release of propranolol hydrochloride can be effectively controlled from a single tablet using HPMC K15M or KollidonSR matrix system.  相似文献   

8.
Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.KEY WORDS: amorphous state, dynamic vapour sorption, particle habit, physical stability, polymorphism, sulfathiazole  相似文献   

9.
The objectives of this research were to evaluate the stability of parthenolide in feverfew solution state and powdered feverfew (solid state), and explore the compatibility between commonly used excipients and parthenolide in feverfew. Feverfew extract solution was diluted with different pH buffers to study the solution stability of parthenolide in feverfew. Powdered feverfew extract was stored under 40 degrees C/0% approximately 75% relative humidities (RH) or 31% RH/5~50 degrees C to study the influence of temperature and relative humidity on the stability of parthenolide in feverfew solid state. Binary mixtures of feverfew powered extract and different excipients were stored at 50 degrees C/ 75% RH for excipient compatibility evaluation. The degradation of parthenolide in feverfew solution appears to fit a typical first-order reaction. Parthenolide is comparatively stable when the environmental pH is in the range of 5 to 7, becoming unstable when pH is less than 3 or more than 7. Parthenolide degradation in feverfew in the solid state does not fit any obvious reaction model. Moisture content and temperature both play important roles affecting the degradation rate. After 6 months of storage, parthenolide in feverfew remains constant at 5 degrees C/31% RH. However, approximately 40% parthenolide in feverfew can be degraded if stored at 50 degrees C/31% RH. When the moisture changed from 0% to 75% RH, the degradation of parthenolide in feverfew increased from 18% to 32% after 6-month storage under 40 degrees C. Parthenolide in feverfew exhibits good compatibility with commonly used excipients under stressed conditions in a 3-week screening study.  相似文献   

10.
The objective of the study was to develop guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Matrix tablets of diltiazem hydrochloride, using various viscosity grades of guar gum in 2 proportions, were prepared by wet granulation method and subjected to in vitro drug release studies. Diltiazem hydrochloride matrix tablets containing either 30% wt/wt lowviscosity (LM1), 40% wt/wt medium-viscosity (MM2), or 50% wt/wt high-viscosity (HM2) guar gum showed controlled release. The drug release from all guar gum matrix tablets followed first-order kinetics via Fickian-diffusion. Further, the results of in vitro drug release studies in simulated gastrointestinal and colonic fluids showed that HM2 tablets provided controlled release comparable with marketed sustained release diltiazem hydrochloride tablets (D-SR tablets). Guar gum matrix tablets HM2 showed no change in physical appearance, drug content, or in dissolution pattern after storage at 40°C/relative humidity 75% for 6 months. When subjectd to in vivo pharmacokinetic evaluation in healthy volunteers, the HM2 tablets provided a slow and prolonged drug release when compared with D-SR tablets. Based on the results of in vitro and in vivo studies it was concluded that that guar gum matrix tablets provided oral controlled release of water-soluble diltiazem hydrochloride. Published: June 30, 2005  相似文献   

11.
The influence of polyhydric alcohols and carbohydrates on the thermostability, i.e., the heat inactivation kinetics, of Bacillus licheniformis alpha-amylase was studied in the temperature range 96 degrees to 130 degrees C. High concentrations (from 9 to 60 weight percent) of glycerol, sorbitol, mannitol, sucrose, or starch can markedly decrease the inactivation rate constant, k, and in the studied cases, this stabilizing effect grows stronger with increasing additive concentration. Statements about stabilization should, however, be specified carefully with respect to temperature, because E(A) is mostly altered likewise. For dissolved enzyme E(A) was almost always decreased in the presence of polyol or carbohydrate, whereas for immobilized enzyme it was augmented in each studied instance. The inactivation of dissolved enzyme can, in all the studied cases, be adequately described as a first-order process. Immobilized enzyme, however, shows biphasic then first-order inactivation kinetics, depending on the additive concentration and temperature.  相似文献   

12.
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
An aerodynamic particle sizer (APS) that uses laser Doppler velocimetry was used to determine aerodynamic diameters of spores of fungal and thermophilic actinomycete species common in mouldy hay, aerosolized at different humidities and temperatures. Results were compared with those obtained from inertial impaction in a cascade impactor. The APS gave slightly smaller measurements than the cascade impactor. Both methods gave aerodynamic diameters generally slightly smaller than the average spore dimensions observed on cascade impactor slides with a microscope. The latter measurements were less than axial dimensions given in the literature. Brief passage of spores through air at 95% relative humidity (RH) and 38 degrees C, compared with 40% RH and 20 degrees C, caused an immediate increase in their aerodynamic diameter and the breaking of chains of spores. Cultures maintained at 75% RH and aerosolized at 98% RH similarly produced larger spore particles than those passed through dry air. These findings have implications for mould-induced asthma and allergic alveolitis since they relate to physical behaviour of airborne spores and particle deposition sites in the lung.  相似文献   

14.
Chemical modification of papain for use in alkaline medium   总被引:1,自引:0,他引:1  
Chemical modification is a useful method to recognize and modify functional determinants of enzymes. Papain, an endolytic cysteine protease (EC3.4.22.2) from Carica papaya latex has been chemically modified using different dicarboxylic anhydrides of citraconic, phthalic, maleic and succinic acids. These anhydrides reacted with five to six amino groups of the lysine residues in the enzyme, thereby changing the net charge of the enzyme from positive to negative. The resultant enzyme had its optimum pH shifted from 7 to 9 and change in temperature optima from 60 to 80 °C. The modified papain also had a higher thermostability. Stability of the modified papain was further increased by immobilization of the enzyme either by adsorption onto inert matrix or by entrapment in polysaccharide polymeric gels. Entrapment in starch gel showed better retention of enzyme activity. Incorporation of modified and immobilized enzymes to branded domestic detergent powders was found to have very good activity retention. The papain entrapped in starch gel showed better stability and activity retention than in other carbohydrate polymers when added to domestic detergent powders.  相似文献   

15.
The release profile of d-limonene and ethyl hexanoate was investigated using a dynamic vapor sorption (DVS) system coupled with gas chromatography. The flavors were encapsulated by spray drying using Saccharomyces cerevisiae cells from which β-glucan had been partially extracted. Relative humidity (RH) was stepped from 20% to 50, 60, 70, and 80% at 30, 40, 50, and 60ºC. The maximum release flux for d-limonene and ethyl hexanoate was around 12 and 28 mg/s?m2?g-powder at 80% RH and 60ºC incubation. The Weibull distribution function was well fitted with the experimental data to analyze release kinetics. The release mechanism parameter was greater than 1.0, which indicates a controlled release with initial induction time. The activation energy for ethyl hexanoate (6 kJ/mol) was lower than d-limonene (41 kJ/mol) at 80% RH, which indicates higher affinition of ethyl hexanoate to migrate from the lipid bilayer membrane towards the water phase.  相似文献   

16.
The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher that the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes-the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first order kinetics. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria. (c) 1993 Wiley & Sons, Inc.  相似文献   

17.
Batch experiments were performed to investigate the influence of cellulose particle size and pH on the anaerobic degradation of crystalline cellulose by ruminal microbes. At a particle size of 50 μm there was a higher hydrolysis and acidogenesis rate, and a reduced degradation time, than for 100-μm particles. Reduction in cellulose particle size resulted in decreased methane production, but an increase of soluble products. Cellulose degradation increased with pH from pH 6.0 to 7.5, whereas at pH⩽5.5 there was no degradation. The inhibitory effect of low pH (⩽5.5) on ruminal microbes was not completely remedied even when the pH of the medium was adjusted to a neutral range. In an anaerobic cellulosic waste degrading system inoculated with ruminal microbes the fermentation system should therefore be maintained above pH 6.0. In all cases, volatile fatty acids were the major water-soluble products of cellulose degradation; acetate and propionate accounted for more than 90% of the volatile fatty acid total.  相似文献   

18.
A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction.  相似文献   

19.
S Kopprasch  H Orlik  D W Scheuch 《Enzyme》1985,34(3):122-128
The kinetics of the increase in activities of eight enzymes in plasma was investigated in hemorrhagic shock in dogs (8.0 kPa, 120 min). The time-course of enzyme activity changes in shock differed between animals and depended on their sensitivity to shock. In the shock-sensitive group of dogs an exponential activity increase was already observed in the hypotension period. However, the dogs of the less shock-sensitive group showed a delay of enzyme release with significantly less pronounced elevation of all enzyme activities except creatine kinase. The initial exponential rise of enzyme activities, which approximately followed first-order kinetics, was quantitatively characterized by the release rates. There was a close correlation between the molecular weights of enzymes and their release rates during shock in both groups of dogs. The relevance of the results to mechanisms of enzyme transport from the cell into the blood is discussed.  相似文献   

20.
Barley α-amylase has been immobilized on silica particles with diameters between 0.5 and 10 μm using a covalent binding method. Immobilization procedures were adjusted to optimize enzyme activity. The effects of product inhibition, thermal stability and operational stability have been determined. The feasibility of using the immobilized enzyme to hydrolyze wheat starch particles at temperatures below the gelatinization temperature (<55 °C) was proven. The optimal conditions for the hydrolysis were found to be: pH 4.5, 40 °C, calcium ion concentration 0.002 M and immobilized enzyme loading of 30 mg/ml. At these conditions, the immobilized enzyme was able to hydrolyze wheat starch particles at concentrations as high as 100 mg/ml with a final conversion of 90% after 24 h of operation. Maltose and glucose were found to inhibit the immobilized enzyme in a similar manner as reported previously using soluble enzyme. Although the thermostability of the immobilized enzyme was superior to the soluble enzyme, the immobilized enzyme degraded at the same rate as the soluble enzyme during cold wheat starch hydrolysis (operational stability unchanged). Model equations are presented for product inhibition, hydrolysis kinetics and enzyme degradation. Using best-fit parameters, the equations are shown to fit the experimental data well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号