首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsu ST  Bonvin AM 《Proteins》2004,55(3):582-593
The entry of HIV-1 into a target cell requires gp120 and receptor CD4 as well as coreceptor CCR5/CXCR4 recognition events associated with conformational changes of the involved proteins. The binding of CD4 to gp120 is the initiation step of the whole process involving structural rearrangements that are crucial for subsequent pathways. Despite the wealth of knowledge about the gp120/CD4 interactions, details of the conformational changes occurring at this stage remain elusive. We have performed molecular dynamics simulations in explicit solvent based on the gp120/CD4/CD4i crystal structure in conjunction with modeled V3 and V4 loops to gain insight into the dynamics of the binding process. Three differentiated interaction modes between CD4 and gp120 were found, which involve electrostatics, hydrogen bond and van der Waals networks. A "binding funnel" model is proposed based on the dynamical nature of the binding interface together with a CD4-attraction gradient centered in gp120 at the CD4-Phe43-binding cavity. Distinct dynamical behaviors of free and CD4-bound gp120 were monitored, which likely represent the ground and pre-fusogenic states, respectively. The transition between these states revealed concerted motions in gp120 leading to: i) loop contractions around the CD4-Phe43-insertion cavity; ii) stabilization of the four-stranded "bridging sheet" structure; and iii) translocation and clustering of the V3 loop and the bridging sheet leading to the formation of the coreceptor binding site. Our results provide new insight into the dynamic of the underlying molecular recognition mechanism that complements the biochemical and structural studies.  相似文献   

2.
HIV-2 is a nonpandemic form of the virus causing AIDS, and the majority of HIV-2-infected patients exhibit long-term nonprogression. The HIV-1 and HIV-2 envelope glycoproteins, the sole targets of neutralizing antibodies, share 30 to 40% identity. As a first step in understanding the reduced pathogenicity of HIV-2, we solved a 3.0-Å structure of an HIV-2 gp120 bound to the host receptor CD4, which reveals structural similarity to HIV-1 gp120 despite divergence in amino acid sequence.  相似文献   

3.
Small-angle x-ray scattering data on the unliganded full-length fully glycosylated HIV-1 gp120, the soluble CD4 (domains 1-2) receptor, and their complex in solution are presented. Ab initio structure restorations using these data provides the first look at the envelope shape for the unliganded and the complexed gp120 molecule. Fitting known crystal structures of the unliganded SIV and the complexed HIV gp120 core regions within our resultant shape constraints reveals movement of the V3 loop upon binding.  相似文献   

4.
Reduction of intramolecular disulfides in the HIV-1 envelope protein gp120 occurs after its binding to the CD4 receptor. Protein disulfide isomerase (PDI) catalyzes the disulfide reduction in vitro and inhibition of this enzyme blocks viral entry. PDI belongs to the thioredoxin protein superfamily that also includes human glutaredoxin-1 (Grx1). Grx1 is secreted from cells and the protein has also been found within the HIV-1 virion. We show that Grx1 efficiently catalyzes gp120, and CD4 disulfide reduction in vitro, even at low plasma levels of glutathione. Grx1 catalyzes the reduction of two disulfide bridges in gp120 in a similar manner as PDI. Purified anti-Grx1 antibodies were shown to inhibit the Grx1 activity in vitro and block HIV-1 replication in cultured peripheral blood mononuclear cells. Also, the polyanion PRO2000, that was previously shown to prevent HIV entry, inhibits the Grx1- and PDI-dependent reduction of gp120 disulfides. Our findings suggest that Grx1 activity is important for HIV-1 entry and that Grx1 and the gp120 intramolecular disulfides are novel pharmacological targets for rational drug development.  相似文献   

5.
Virtual screening of novel entry inhibitor scaffolds mimicking primary receptor CD4 of HIV-1 gp120 was carried out in conjunction with evaluation of their potential inhibitory activity by molecular modeling. To do this, pharmacophore models presenting different sets of the hotspots of cellular receptor CD4 for its interaction with gp120 were generated. These models were used as the templates for identification of CD4-mimetic candidates by the pepMMsMIMIC screening platform. Complexes of these candidates with gp120 were built by high-throughput ligand docking and their stability was estimated by molecular dynamics simulations and binding free energy calculations. As a result, five top hits that exhibited strong attachment to the two well-conserved hotspots of the gp120 CD4-binding site were selected for the final analysis. In analogy to CD4, the identified compounds make hydrogen bonds with Asp-368gp120 and multiple van der Waals contacts with the gp120 residues that bind to Phe-43CD4, resulting in destruction of the critical interactions of gp120 with Phe-43CD4 and Arg-59CD4. The complexes of the CD4-mimetic candidates with gp120 show relative conformational stability within the molecular dynamics simulations and expose the high percentage occupancies of intermolecular hydrogen bonds, in line with the data on the binding free energy calculations. In light of these findings, the identified compounds are considered as good scaffolds for the development of new functional antagonists of viral entry with broad HIV-1 neutralization.  相似文献   

6.
The HIV-1 gp120 exterior envelope glycoprotein undergoes a series of conformational rearrangements while sequentially interacting with the receptor CD4 and coreceptor CCR5 or CXCR4 on the surface of host cells to initiate virus entry. Both the crystal structures of the HIV-1 gp120 core bound by the CD4 and antigen 17b, and the SIV gp120 core pre-bound by the CD4 are known. We have performed dynamic domain studies on the homology models of the CD4-bound and unliganded HIV-1 gp120 with modeled V3 and V4 loops to explore details of conformational changes, hinge axes, and hinge bending regions in the gp120 structures upon CD4 binding. Four dynamic domains were clustered and intricately motional modes for domain pairs were discovered. Together with the detailed comparative analyses of geometrical properties between the unliganded and liganded gp120 models, an induced fit model was proposed to explain events accompanying the CD4 engagement to the gp120, which provided new insight into the dynamics of the molecular induced binding mechanism that complements the molecular dynamics and crystallographic studies.  相似文献   

7.
8.
Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1.  相似文献   

9.
Schön A  Madani N  Klein JC  Hubicki A  Ng D  Yang X  Smith AB  Sodroski J  Freire E 《Biochemistry》2006,45(36):10973-10980
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.  相似文献   

10.
The interaction of the HIV-1 fusion protein gp120 with its cellular receptor CD4 represents a crucial step of the viral infection process, thus rendering gp120 a promising target for the intervention with anti-HIV drugs. Naturally occurring mutations of gp120, however, can decrease its affinity for anti-infective ligands like therapeutic antibodies or soluble CD4. To understand this phenomenon on a structural level, we performed molecular dynamics simulations of two gp120 variants (termed gp1203-2 and gp1202-1), which exhibit a significantly decreased binding of soluble CD4. In both variants, the exchange of a nonpolar residue byglutamate was identified as an important determinant for reduced binding. However, those glutamates are located at different sequence positions and affect different steps of the recognition process: E471 in gp1203-2 predominantly affects the CD4-bound conformation, whereas E372 in gp1202-1 mainly modulates the conformational sampling of free gp120. Despite these differences, there exists an interesting similarity between the two variants: both glutamates exert their function by modulating the conformation and interactions of glycine-rich motifs (G366–G367, G471–G473) resulting in an accumulation of binding incompetent gp120 conformations or a loss of intermolecular gp120–CD4 hydrogen bonds. Thus, the present data suggests that interference with the structure and dynamics of glycine-rich stretches might represent a more widespread mechanism, by which gp120 mutations reduce binding affinity. This knowledge should be helpful to predict the resistance of novel gp120 mutations or to design gp120–ligands with improved binding properties.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:41  相似文献   

11.
The envelope glycoprotein (Env) is the sole antigenic feature on the surface of HIV and the target for the humoral immune system. Soluble, uncleaved gp140 Env constructs truncated at the transmembrane domain are being investigated intensively as potential vaccine immunogens by many groups, and understanding their structural properties is essential. We used hydrogen/deuterium-exchange mass spectrometry and small-angle X-ray scattering to probe structural order in a panel of commonly used gp140 constructs and matched gp120 monomers. We observed that oligomeric forms of uncleaved gp140, generally presumed to be trimeric, contain a protease-resistant form of gp41 akin to the postfusion, helical bundle conformation and appear to lack specific interactions between gp120 and gp41. In contrast, the monomeric form of gp140 shows significant stabilization of the gp120 inner domain imparted by the gp41 region, demonstrating excellent agreement with past mutagenesis studies. Moreover, the gp140 monomers respond to CD4 binding in manner that is consistent with the initial stages of Env activation: CD4 binding induces structural ordering throughout gp120 while loosening its association with gp41. The results indicate that uncleaved gp140 oligomers do not represent an authentic prefusion form of Env, whereas gp140 monomers isolated from the same glycoprotein preparations in many ways exhibit function and internal structural order that are consistent with expectations for certain aspects of native Env. gp140 monomers may thus be a useful reagent for advancing structural and functional studies.  相似文献   

12.
Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.  相似文献   

13.
CD4-gp120 interaction is the first step for HIV-1 entry into host cells. A highly conserved pocket in gp120 protein is an attractive target for developing gp120 inhibitors or novel HIV detection tools. Here we incorporate seven phenylalanine derivatives having different sizes and steric conformations into position 43 of domain 1 of CD4 (mD1.2) to explore the architecture of the ‘Phe43 cavity’ of HIV-1 gp120. The results show that the conserved hydrophobic pocket in gp120 tolerates a hydrophobic side chain of residue 43 of CD protein, which is 12.2 Å in length and 8.0 Å in width. This result provides useful information for developing novel gp120 inhibitors or new HIV detection tools.  相似文献   

14.
15.
Ixodes scapularis salivary protein, Salp15, inhibits CD4(+) T cell activation by binding to the most-extracellular domains of the CD4 molecule, potentially overlapping with the gp120-binding region. We now show that Salp15 inhibits the interaction of gp120 and CD4. Furthermore, Salp15 prevents syncytia formation between HL2/3 (a stable HeLa cell line expressing the envelope protein) and CD4-expressing cells. Salp15 prevented gp120-CD4 interaction at least partially through its direct interaction with the envelope glycoprotein. A phage display library screen provided the interacting residues in the C1 domain of gp120. These results provide a potential basis to define exposed gp120 epitopes for the generation of neutralizing vaccines.  相似文献   

16.
The glycans on HIV-1 gp120 play an important role in shielding neutralization-sensitive epitopes from antibody recognition. They also serve as targets for lectins that bind mannose-rich glycans. In this study, we investigated the interaction of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 to plates coated with anti-CD4bs antibodies b12 and b6 or the CD4 receptor mimetic CD4-IgG2. The average enhancement of b12 or b6 binding was higher for subtype B viruses than for subtype C, while for CD4-IgG2, it was similar for both subtypes, although lower than observed with antibodies. This GRFT-mediated enhancement of HIV-1 binding to b12 was reflected in synergistic neutralization for 2 of the 4 viruses tested. The glycan at position 386, which shields the CD4bs, was involved in both GRFT-mediated enhancement of binding and neutralization synergism between GRFT and b12. Although GRFT enhanced CD4bs exposure, it simultaneously inhibited ligand binding to the coreceptor binding site, suggesting that GRFT-dependent enhancement and neutralization utilize independent mechanisms. This study shows for the first time that GRFT interaction with gp120 exposes the CD4bs through binding the glycan at position 386, which may have implications for how to access this conserved site.  相似文献   

17.
18.
HIV-1 enters cells through interacting with cell surface molecules such as CD4 and chemokine receptors. We generated recombinant soluble gp120s derived from T-cell line-tropic (T-tropic) and macrophage-tropic (M-tropic) HIV-1 strains using a baculovirus expression system and investigated the association of CD4-gp120 complex with the chemokine receptor and/or other surface molecule(s). For monitoring the co-down-modulations of the CD4-gp120 complex, a cytoplasmic domain deletion mutant (tailless CD4), which is not capable of undergoing down-modulation by itself in response to phorbol ester PMA, was used. Our studies revealed both cell-type and HIV-1 strain-specific differences. We found that T-tropic gp120s were capable of priming co-down-modulation with tailless CD4 by interacting with CXCR4, whereas M-tropic SF162 gp120 could not after PMA treatment even in the presence of CCR5. Among the T-tropic HIV-1 envelopes, IIIB gp120 was the most potent. Furthermore, the ability of gp120 to prime the PMA induced co-down-modulation of tailless CD4 appeared to be dependent on the concentration of the principal coreceptor CXCR4. Nevertheless, the observation that IIIB gp120 strongly primed tailless CD4 co-down-modulation on human osteosarcoma HOS cells that express undetectable levels of surface CXCR4 raised the possibility that membrane component(s) other than those recently identified can be involved in down-modulation of the CD4/gp120 complexes.  相似文献   

19.
20.
Synthetic mimetics of the CD4-binding site of HIV-1 gp120 are promising candidates for HIV-1 entry inhibition, as well as immunogen candidates for the elicitation of virus-neutralizing antibodies. On the basis of the crystal structure of gp120 in complex with CD4, we have used a recently introduced strategy for the generation of structurally diverse scaffolds to design and synthesize a scaffolded peptide, in which three fragments, making up the sequentially discontinuous binding site of gp120 for CD4, are presented in a nonlinear and discontinuous fashion through a molecular scoffold, which restrains conformational flexibility. The affinities of this molecule to CD4, as well as to the broadly neutralizing antibody mAb b12, whose epitope overlaps the CD4-binding site of gp120, were determined in competitive binding assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号