首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background and Aims

The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below- and above-ground) and reproductive tissues.

Methods

Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.

Key Results and Conclusions

Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.  相似文献   

2.
Hesse E  Pannell JR 《Annals of botany》2011,107(6):1039-1045

Background and Aims

Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua.

Methods

The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared.

Key Results

Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes.

Conclusions

Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua.  相似文献   

3.
We examined sexual dimorphism in reproductive allocation and its effects on growth and subsequent reproduction in a natural population of the dioecious woody shrub Lindera benzoin (L.) Blume. In addition to comparing natural patterns of growth and reproduction in a marked population of 251 females and 87 males, we experimentally examined the effect of reduced reproduction on future growth and reproduction in female plants and examined sexual dimorphism in carbon/nutrient balance. Our results suggest that females of L. benzoin bear greater reproductive costs in terms of both biomass and minerals. These costs were measurable in terms of current biomass and allocation of nitrogen to reproduction, as well as subsequent growth, reproduction, and tissue carbon/nutrient balance. Based upon the results of a fruit-thinning experiment and path analysis, fruit production in 1991 appeared to have direct negative effects on fruit production in 1992, an effect that was not necessarily mediated through effects on plant growth. We discuss our results in the context of other intrinsic and extrinsic factors that can influence growth, reproductive costs, and mortality in this species.  相似文献   

4.
Variation in the timing of reproductive functions in dioecious organisms may result in adaptive changes in the direction of sexual dimorphism during the breeding season. For plants in which both pollen and seeds are wind-dispersed, it may be advantageous for male plants to be taller when pollen is dispersed and female plants to be taller when seeds are dispersed. We examined the dynamics of height dimorphism in Rumex hastatulus, an annual, wind-pollinated, dioecious plant from the southern USA. A field survey of seven populations indicated that females were significantly taller than males at seed maturity. However, a glasshouse experiment revealed a more complex pattern of height growth during the life cycle. No dimorphism was evident prior to reproduction for six of seven populations, but at flowering, males were significantly taller than females in all populations. This pattern was reversed at reproductive maturity, consistent with field observations. Males flowered later than females and the degree of height dimorphism was greater in populations with a later onset of male flowering. We discuss the potential adaptive significance of temporal changes in height dimorphism for pollen and seed dispersal, and how this may be optimized for the contrasting reproductive functions of the sexes.  相似文献   

5.
Reproductive and somatic biomass, nitrogen (N), and phosphorus (P) pools were compared between females and males in 1st-year plants of Silene dioica. We estimated irretrievable resources allocated to seeds, pollen, flowers, and unrecovered summer leaf investment by collecting plant parts at abscission throughout the season. At the end of the season, we determined resources lost through senescent stems and autumn leaf turnover and resources stored in perennial roots and overwintering buds. Sexual differences in allocation patterns depended on the resource used for comparison, and whether absolute or proportional resource pools were assessed. Total resource pools in terms of biomass and N were similar for females and males. However, male plants acquired relatively more P. The proportional reproductive investment, i.e., reproductive effort, was similar for males and females in terms of biomass and N. In terms of P, male reproductive effort was higher. There was no difference between sexes in the proportional and relative biomass allocated to perennial roots and overwintering buds. However, in terms of absolute and relative N allocation to below-ground parts, females had larger reserves than males. Females, moreover, had a larger proportion of their P in below-ground parts. However, as male total P pools were larger, absolute P reserves did not differ between sexes. The high reproductive effort and N depletion of below-ground parts in males resulted largely from higher flower production compared to females. In females, seeds were the major component of reproductive effort. These results show that if biomass and nutrient allocation are assessed in parallel for dioecious plants, we obtain a more complete view of their sexual differences. Received: 07 May 1998 / Accepted: 30 October 1998  相似文献   

6.
Summary Interactions between vegetative growth and reproduction were evaluated in Peumus boldus, Lithraea caustica and Laretia acaulis, three woody dioecious species in central Chile. Phenological observations were made periodically on marked branches of male and female plants, and biomass allocation (dry weight) to vegetative and reproductive tissues was measured. The magnitude of flowering was evaluated in groups of plants in three successive seasons. The patterns of activities are species- and sex-dependent, and cycles of 2–4 years have been established. Branches that produce flowers either do not grow or grow less than branches without flowers, and males and females have differential resource allocation: male branches attain higher biomass values. Groups of plants show seasonal behavior that suggest synchrony in their reproductive activities.  相似文献   

7.
Sex ratio and sexual dimorphism of Borderea pyrenaica, a long-lived dioecious geophyte endemic to the Pyrenees (north-east Iberian Peninsula), were examined in three alpine populations. In this species, age can be estimated and the sex of nonreproductive adult plants identified. Male plants attain sexual maturity earlier, flower more frequently and grow faster than female plants, whereas females allocate a higher biomass to reproduction than males. These results support the hypothesis that female plants incur a higher cost of sexual reproduction and that this higher cost is measurable as reduced vegetative growth and lower flowering frequency. Variation of sex ratio among young, intermediate and old adults within populations suggests, however, that this higher female reproductive investment does not result in sexual differences in mortality. The overall male-biased sex ratio in B. pyrenaica is mainly a consequence of the tendency of males to reproduce at an earlier age and more frequently than females.  相似文献   

8.
Sexual dimorphism in dioecious plants often occurs as a consequence of the different resource requirements of females and males, especially during reproduction. The contrasting reproductive roles of the sexes can influence the phenology of growth, plant size, and flowering time, with implications for the intensity of competitive interactions within and between the sexes. Here, we investigate the influence of contrasting nutrient regimes and intra-sexual and inter-sexual competition on the expression of sexual dimorphism in life-history traits and biomass allocation throughout the life cycle of the dioecious annual Rumex hastatulus Baldw. (Polygonaceae). Development of a sex-specific marker enabled us to quantify the influence of competition on sex-specific differences in mortality and vegetative traits. We were particularly interested in determining whether the overall performance of the sexes might differ between the two forms of intra-specific competition, potentially providing evidence for sexual specialization in resource acquisition and niche differentiation. Our results indicated that although patterns of sexual dimorphism were dynamic, they were largely insensitive to nutrient conditions. We found that intra-sexual competition was more severe than inter-sexual competition, differentially affecting mortality and most traits during the vegetative and particularly the reproductive stage of the life history. Female trait values generally increased more under inter-sexual than intra-sexual competition in comparison to males. Our findings are consistent with temporal niche differentiation resulting from sexual specialization for different resource requirements and provide evidence for the “Jack Sprat effect.”  相似文献   

9.
Females of woody dioecious species usually devote more resources to reproduction than males. This may lead to a decrease in female survival and growth. The costs of reproduction, however, can be lightened through a number of mechanisms, as for example avoiding the temporal coincidence of reproduction and vegetative growth. The aim of this study was to evaluate whether males and females of P. lentiscus differ in the timing of their vegetative growth, and to assess whether the sequencing of vegetative growth and reproduction reduces reproductive costs. We monitored phenology in males and females. We also compared male and female allocation of nutrients and biomass in the branch, and the developmental stability of the growing shoots. We did this both prior to and at the end of the fruiting period. Males and females showed similar vegetative and flowering phenologies. Males invested more biomass in flowering, but the sexes showed equal vegetative biomass and nutrient content prior to the fruiting period. In female branches, no trade-off was found between fruit load and current-year vegetative growth. In P. lentiscus, avoiding the overlap of flowering, vegetative growth and fruiting probably contributes to reduce the immediate costs of reproductive efforts, both in males and females.  相似文献   

10.
Reproduction can have a high resource cost. It has been suggested that greater investments in sexual reproduction by female dioecious plants leads to a lower rate of vegetative growth in females than in males. In this study, we investigated sexual dimorphism in biomass allocation and genet growth of the dioecious clonal shrub, northern prickly ash (Xanthoxylum americanum). The allocation of biomass over the course of one growing season to reproductive tissue, leaves, and growth of aboveground first-year wood, was compared in 18 clones growing in fields and six clones in woods in southeastern Wisconsin during 1985 and 1986. In addition, the number of shoots per clone, and weight of nonfirst-year wood (accumulated biomass) above- and below-ground were estimated. In open field sites, male clones allocated more biomass to new wood and less to reproduction than females, although males allocated more to flowers alone. Accordingly, male clones had significantly more shoots and more accumulated biomass both above- and below-ground than female clones. In the woods, where fruit set was near zero, there were few significant differences between male and female clones in either biomass allocation or accumulated biomass. These results support the hypothesis that the high resource investment in fruit production by females reduces their vegetative growth relative to males.  相似文献   

11.
In animal-pollinated plants with unisexual flowers, sexual dimorphism in floral traits may be the consequence of pollinator-mediated selection. Experimental investigations of the effects of variation in flower size and floral display on pollinator visitation can provide insights into the evolution of floral dimorphism in dioecious plants. Here, we investigated pollinator responses to experimental arrays of dioecious Sagittaria latifolia in which we manipulated floral display and flower size. We also examined whether there were changes in pollinator visitation with increasing dimorphism in flower size. In S. latifolia, males have larger flowers and smaller floral displays than females. Visitation by pollinators, mainly flies and bees, was more frequent for male than for female inflorescences and increased with increasing flower size, regardless of sex. The number of insect visits per flower decreased with increasing floral display in males but remained constant in females. Greater sexual dimorphism in flower size increased visits to male inflorescences but had no influence on the number of visits to female inflorescences. These results suggest that larger flower sizes would be advantageous to both females and males, and no evidence was found that females suffer from increased flower-size dimorphism. Small daily floral displays may benefit males by allowing extended flowering periods and greater opportunities for effective pollen dispersal.  相似文献   

12.
Abstract The patterns of resource allocation are described for a dioecious tropical palm, Chamaedorea tepejilote. Resource allocation was measured by harvesting fifteen plants of C. tepejilote. The relative allocation of biomass in the stem increased with the size of the plant; that in the leaves decreased and that in the other structures remained roughly constant. Female plants showed a greater total reproductive effort, though male plants produced more inflorescences during the flowering season. Both male and female plants allocated more resources to prop root than to hypogeal roots. The annual productivity of reproductive and vegetative parts of C. tepejilote was estimated using allometric relationships for different plant structures and from demographic data obtained from the field. Annually, female plants allocated significantly more resources to leaves than male plants. Yearly productivity of inflorescences was higher for male plants, while female plants had greater total reproductive productivity (inflorescences and fruits). Correlation analysis showed an increase in reproductive effort with plant size, and an inverse relationship between fecundity and probability of survival, fecundity and residual reproductive value, and reproductive effort and life expectancy; these relationships suggested a cost in reproduction. Additionally, mature plants with different growth rates exhibited differences in fecundity: tall plants (>2.5m height) that grew more than 40 cm in height in four years had lower values of fecundity in comparison to plants of slower growth. These data were discussed in the context of the implications in the life history of a dioecious tropical plant.  相似文献   

13.
We investigated clonal traits in the dioecious herb Rumex acetosella to characterize sexual dimorphism in clonal forms and to correlate below-ground clonal patterns and above-ground ramet distributions. We recorded creeping root length, branching patterns, ramet and clump (caespitose ramets from the same position on the root) sprouting patterns, and biomass allocations in three females and males. We also estimated the patch size of flowering ramets within a quadrat. No sexual dimorphism was detected in the frequencies of branches and flowering ramets per root length. Male plants allocated proportionally more biomass to below-ground organs. Total root length did not differ between the sexes. Females sprouted more clumps with fewer flowering ramets per root length than males, which sprouted fewer clumps with more flowering ramets, which meant that clump sprouting patterns were phalanx-like in females and guerrilla-like in males. Flowering ramets were aggregately distributed in both females and males and patch sizes were similar between sexes, indicating that the spreader propagations were not found in the guerrilla-like males. We assumed that sexual dimorphism occurred in response to physiological integration for higher reproductive effort in females.  相似文献   

14.
Abstract Patterns of reproductive and vegetative biomass allocation were compared in male and female plants of the alpine herb Aciphylla simplicifolia. Male and female plants had similar vegetative biomass but differed in the pattern of resource allocation. Inflorescences of males and females were similar in weight at the time of flowering, but differed in biomass allocation to some structures within the inflorescences, particularly those associated with ovule production and pollinator attraction (number and size of flowers). At the time of fruit production, female inflorescences were 2.6 times heavier than at flowering with developing fruit six times heavier than flowers. In addition to the increase in biomass allocated to structures associated with the provisioning and dissemination of seed, support structures (main and side stalks) were also heavier. As a result of this additional investment of resources at the time of fruit production, the reproductive effort (RE) of female plants was much higher than that of males: 37% of above ground biomass compared with 21% for males. Differences in RE did not change with plant size; however, allocation to reproduction appeared to be a constant proportion of biomass over nearly all plant sizes sampled. These results show that sex‐specific resource allocation can be a complex of temporal and morphological patterns.  相似文献   

15.
Summary We examined the influence of differential reproductive frequency between the sexes on tertiary (phenotypic) sex ratios in the the dioecious tree Nyssa sylvatica (Nyssaceae). Reproduction was evaluated in relation to sex, size and canopy exposure using flowering data collected from 1229 marked trees over a four year period. For subsets of each population we used data on flower number, fruit crop size, fruit/flower ratios, and individual flower and fruit mass to compare biomass invested in reproductive structures of males and females. We also examined seasonal changes in stem nitrogen and soluble carbohydrate content in relation to flower and fruit production for trees of each sex. Our results indicate that: 1) Male-biased tertiary sex ratios could be explained by more frequent reproduction by male trees; 2) Estimated secondary sex ratios based on sums of all known males and females were not significantly different from 1:1; 3) Flowering frequency of males and females was significantly related to plant size (DBH) and exposure of the canopy to light; 4) Estimtes of reproductive biomass allocation ranged from 1.36 to 10.8 times greater for females relative to males; 5) Flower production was related to stem nutrient status for both sexes, but nutrient depletion and its effect on subsequent flowering was much more pronounced for female trees. We conclude that less frequent flowering by female trees may result from depletion of stored reserves, and that differential flowering frequency in N. sylvatica may ultimately reduce apparent sexual differences in the costs of reproduction.  相似文献   

16.
Summary Patterns of resource allocation in the dioecious Rumex acetosa and R. acetosella were investigated. Males were found to allocate more to reproduction during flower production than females, whereas females invested considerably more in reproduction during seed production. Altogether, females allocated both a higher total amount and a higher proportion of energy to reproduction than did males. By regression analysis, the influence of plant size on reproductive effort was examined separately for males and females. The results indicated that while reproductive effort is sometimes lower for tall plants than for small plants, size-independent effects have a greater influence on reproductive effort than size distribution. An analysis of variance was conducted to investigate the effects of population, season, sex and their interactions on plant size, and an analysis of covariance was used to study differences in resource allocation patterns. Different interaction effects were found to be most important in the two species of Rumex.  相似文献   

17.
Summary The response by male and female plants to herbivory was studied by experimental defoliation of the dioecious perennial herb Silene dioica in a green-house. Male and female plants were defoliated prior to and during the early flowering phase at two intensities (50% and 100% of leaf-area removed) in two consecutive years. Defoliation resulted in a decrease in the number of flowers initiated in both sexes, while a larger delay of peak flowering and a higher mortality was observed in males compared to females. In female plants, severe defoliation resulted in a reduction in seed number per capsule and in seed size compared to control. Females showed a negative correlation between the production of flowers in the first and second season in all treatments, while flowering in males the first season was not correlated with flowering in the second season. Females also showed a lower frequency of flowering than males during the two seasons studied. However, during the flowering period, males allocated significantly more biomass to flowers than did females. This outcome supports the idea that females may have a higher total reproductive expenditure than males, but males have a higher reproductive effort during flowering. Male rosette leaves were significantly preferred by the generalist herbivore Arianta arbustorum in experiments. This preference was most pronounced in trials with leaves from fertilized plants compared to nonfertilized plants. A greater storage of resources in aboveground leaves during winter by males compared to females may explain the higher preference for male leaves and the higher male mortality following early defoliation. Furthermore, males are smaller than females and may have a lower ability than females to replace lost resources needed for reproduction when defoliated early in the season.  相似文献   

18.
1 Using a combination of observational and experimental approaches, both allocation of resources to reproduction (often called the direct cost of reproduction) and the subsequent long-term costs (the indirect, delayed or demographic cost) associated with reproductive allocation to male and female function in Siparuna grandiflora (Siparunaceae), a tropical dioecious shrub, were examined.
2 The objectives were to determine whether females allocate more biomass or nitrogen per reproductive episode than males, and whether there is a long-term cost of reproduction in terms of subsequent growth or reproduction for either sex. If there is no long-term cost of reproduction, then reproduction may be viewed as free in an evolutionary sense.
3 As is generally the case in dioecious species, females allocated more biomass and nitrogen to reproduction than males. Females also showed delayed costs of reproduction in terms of decreased growth and subsequent reproduction, whereas males did not.
4 The lack of measurable delayed costs in males suggests that with the evolution of dioecy, selection has reduced delayed costs of reproduction in S. grandiflora males. In contrast, females that were prevented from reproducing were able to re-allocate resources to growth, and produced more stem length on average than males. This re-allocation response may have evolved to reduce delayed costs of reproduction in females over time frames longer than that considered in the present study.  相似文献   

19.
In dioecious species, females typically allocate more resources to reproduction and incur greater costs of reproduction than males. In gynodioecious species, sex-based differences in reproductive allocation (RA) and costs have been less studied. Such knowledge, however, is relevant to address how females establish and increase in frequency in populations. We examine RA and reproductive costs by comparing fruit set, the proportion of biomass allocated to reproduction, and the responses of fruit set and vegetative growth to shoot defoliation in females and hermaphrodites in gynodioecious Leucopogon melaleucoides. Relative to hermaphrodites, females exhibited a two-fold fruit set advantage. Female fruit set increased proportionately with flower number, but hermaphrodite fruit set was reduced on plants with more flowers. Sex-based differences in allocation to other traits were small. Thus, female RA at flowering was similar to hermaphrodite RA, but was 1.4-fold greater at fruiting. Relative to controls, defoliation reduced fruit set and the percentage of shoots that produced new vegetative growth similarly in both sexes. However, females had a lower proportion of shoots with new growth overall. Further, defoliation on females reduced the dry mass of new growth by 44% compared with controls, whereas hermaphrodites were not affected. These results indicate a trade-off between reproduction and vegetative growth, and greater female costs of reproduction, particularly under resource-limiting conditions. In the absence of compensatory traits to offset higher female reproductive costs, such trade-offs have the potential to retard the spread of females in gynodioecious populations.  相似文献   

20.
Aims We explore the possible role of leaf size/number trade-offs for the interpretation of leaf size dimorphism in dioecious plant species.Methods Total above-ground biomass (both male and female) for three herbaceous dioecious species and individual shoots (from both male and female plants) for three woody dioecious species were sampled to record individual leaf dry mass, number of leaves, dry mass of residual above-ground tissue (all remaining non-leaf biomass), number of flowers/inflorescences (for herbaceous species) and number of branches.Important findings For two out of three woody species and two out of three herbaceous species examined, male plants produced smaller leaves but with higher leafing intensity—i.e. more leaves per unit of supporting (residual) shoot tissue or plant body mass—compared with females. Male and female plants, however, did not differ in shoot or plant body mass or branching intensity. We interpret these results as possible evidence for a dimorphic leaf deployment strategy that promotes both male and female function, respectively. In male plants, capacity as a pollen donor may be favored by selection for a broadly spaced floral display, hence favoring relatively high leafing intensity because this provides more numerous axillary meristems that can be deployed for flowering, thus requiring a relatively small leaf as a trade-off. In one herbaceous species, higher leafing intensity in males was associated with greater flower production than in females. In contrast, in female plants, selection favors a relatively large leaf, we propose, because this promotes greater capacity for localized photosynthate production, thus supporting the locally high energetic cost of axillary fruit and seed development, which in turn requires a relatively low leafing intensity as a trade-off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号