首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of exogenously applied H2O2 on salt stress acclimation was studied with regard to plant growth, lipid peroxidation, and activity of antioxidative enzymes in leaves and roots of a salt-sensitive maize genotype. Pre-treatment by addition of 1 microM H2O2 to the hydroponic solution for 2 days induced an increase in salt tolerance during subsequent exposure to salt stress. This was evidenced by plant growth, lipid peroxidation and antioxidative enzymes measurements. In both leaves and roots the variations in lipid peroxidation and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, and catalase) activities of both acclimated and unacclimated plants, suggest that differences in the antioxidative enzyme activities may, at least in part, explain the increased tolerance of acclimated plants to salt stress, and that H2O2 metabolism is involved as signal in the processes of maize salt acclimation.  相似文献   

2.
Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent?+?incandescent light (100 μmol photons m?2 s?1). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment.  相似文献   

3.
The response of the antioxidant system to salt stress was studied in the roots of the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (Lem) and its wild salt-tolerant relative L. pennellii (Corr.) D'Arcy accession Atico (Lpa). Roots of control and salt (100 m M NaCl)-stressed plants were sampled at various times after commencement of salinization. A gradual increase in the membrane lipid peroxidation in salt-stressed root of Lem was accompanied with decreased activities of the antioxidant enzymes: superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and decreased contents of the antioxidants ascorbate and glutathione and their redox states. In contrast, increased activities of the SOD, CAT, APX, monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), and increased contents of the reduced forms of ascorbate and glutathione and their redox states were found in salt-stressed roots of Lpa, in which the level of membrane lipid peroxidation remained unchanged. It seems that the better protection of Lpa roots from salt-induced oxidative damage results, at least partially, from the increased activity of their antioxidative system.  相似文献   

4.
The effects of salicylic acid (SA) on manganese (Mn) toxicity in cucumber plants (Cucumis sativus L.) were studied by investigating the symptoms, plant growth, lipid peroxidation, antioxidative enzymes and antioxidants. Excess Mn caused serious chlorosis and inhibited the growth of cucumber plants, and dramatically increased accumulation of Mn in both shoots and roots, furthermore, inhibited the absorption of Ca, Mg and Zn. Addition of SA decreased the transport of Mn from roots to shoots, alleviated the inhibition of Ca, Mg and Zn absorption induced by excess Mn, reduced the toxicity symptoms and promoted the plant growth. The accumulation of reactive oxygen species (ROS) significantly increased in cucumber leaves exposed to excess Mn, and resulted in the lipid peroxidation, which was indicated by accumulated concentration of thiobarbituric acid-reactive substances (TBARS). Addition of SA significantly decreased the level of ROS and lipid peroxidation. Activities of antioxidant enzymes showed different changes, addition of SA inhibited catalase (CAT) and ascorbate peroxidase (APX) activities, while increased activities of superoxide dismutase (SOD), peroxidase (POD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber leaves exposed to excess Mn. As important antioxidants, ascorbate and glutathione contents in cucumber leaves exposed to excess Mn were significantly increased by SA treatment.  相似文献   

5.
Two contrasting barley (Hordeum vulgare L.) cultivars, i.e. Kepin No.7 (salt sensitive) and Jian 4 (salt tolerant), were grown hydroponically to study the effect of exogenous silicon (Si) on time dependent changes of the activities of major antioxidant enzymes and of lipid peroxidation in roots under salt stress. Enzymes included: superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and glutathione reductase (GR). Three treatments with three replicates were investigated consisting of a control (basal nutrients with neither NaCl nor Si added), 120 mmol/L-1 NaCl, and 120 mmol/L-1 NaCl +1.0 mmol/L-1 Si. Plant roots were harvested 2, 4 and 6 days after treatment and assayed for activities of the antioxidant enzymes and the concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), and electrolytic leakage percentage (ELP). The activities of SOD, POD and CAT in roots of salt-stressed plants were significantly stimulated at Day 2 compared to control plants, but considerably decreased at Day 4 and onward. GR activity in roots of salt-stressed plants remained unchanged at Day 2, but significantly decreased at Day 4 and onward. However, exogenous Si significantly enhanced these enzyme activities in roots of salt-stressed plants compared to Si-deprived salt treatments. This Si effect was time-dependent and became stronger as the experiments continued. The tendency of change in the activities of antioxidant enzymes and the concentration of GSH coincided with the concentration of MDA, the end product of lipid peroxidation, and the ELP. Higher activities of antioxidant enzymes, and higher concentration of GSH, but lower concentration of MDA and lower ELP were noted in cultivar Jian 4 compared to Kepin No. 7, implying genotypic differences with Jian 4 being less susceptible to stress-dependent membrane lipid peroxidation. The effects of Si-enhanced salt tolerance are discussed with respect to cell membrane integrity, stability and function in barley.  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) association increases plant stress tolerance. This study aimed to determine the mitigation effect of AMF on the growth and metabolic changes of cucumbers under adverse impact of salt stress. Salinity reduced the water content and synthesis of pigments. However, AMF inoculation ameliorated negative effects by enhancing the biomass, synthesis of pigments, activity of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and the content of ascorbic acid, which might be the result of lower level lipid peroxidation and electrolyte leakage. An accumulation of phenols and proline in AMF-inoculated plants also mediated the elimination of superoxide radicals. In addition, jasmonic acid, salicylic acid and several important mineral elements (K, Ca, Mg, Zn, Fe, Mn and Cu) were enhanced with significant reductions in the uptake of deleterious ions like Na+. These results suggested that AMF can protect cucumber growth from salt stress.  相似文献   

7.
The current study was taken up to examine the role of bioagent (Trichoderma hamatum) in mitigating the deleterious effects of NaCl stress in Ochradenus baccatus. Varying concentrations of salt (0, 75, and 150 mM) were used to observe the effect on growth, pigments, some key metabolic attributes, antioxidant enzymes, and elemental accumulation in O. baccatus. The results indicated significant decrease in seed germination, plant growth, pigment content, membrane stability index, tissue water content, and total lipid content with salt stress. Lipid peroxidation increases with the increasing concentration of NaCl. Moreover, salinity stimulated the biosynthesis of phenols, diacylglycerol, sterol esters, nonesterified fatty acids, and enzymatic antioxidants like superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase. The Na+ content in shoot increases with elevated levels of NaCl concentration, accompanied with significant decreases in K+, Mg2+, and Ca2+. Application of bioagent (T. hamatum) has been observed to alleviate the antagonistic effect of salt stress on plant growth and metabolic processes. In absence and presence of salt stress, the bioagent stimulated the plant growth and alter the plant metabolism through the modification of the above parameters.  相似文献   

8.
Changes of carotenoids and anthocyanins content, lipid peroxidation, and activity of antioxidant enzymes were studied in wild type and tocopherol-deficient lines vte1 and vte4 of Arabidopsis thaliana subjected to 200 mM NaCI during 24 h. The salt stress enhanced the intensity of lipid peroxidation to different extent in all three plant lines. Salt stress resulted in an increase of carotenoid content and activity of catalase, ascorbate peroxidase, guaiacol peroxidase and glutathione reductase in wild type and tocopherol-deficient vte1 mutant. However, the increase in anthocyanins concentration was observed in vte1 mutants only. In vte4 mutant, which contain gamma-tocopherol instead of alpha-tocopherol, the response to salt stress occurred via coordinative action of superoxide dismutase and enzymes of ascorbate-glutathione cycle, in particular, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and glutathione-S-transferase. It can be concluded, that salt stress was accompanied by oxidative stress in three studied lines, however different mechanisms involved in adaptation of wild type and tocopherol-deficient lines to salt stress.  相似文献   

9.
The changes in the activity of antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POX: EC 1.11.1.7), ascorbate peroxidase (APOX: EC 1.11.1.11) and glutathione reductase (GR: EC 1.6.4.2), free proline content, and the rate of lipid peroxidation level in terms of malondialdehyde (MDA) in roots of two rice cultivars (cvs.) differing in salt tolerance were investigated. Plants were subjected to three salt treatments, 0, 60, and 120 mol m−3 NaCl for 7 days. The results showed that activated oxygen species may play a role in cellular toxicity of NaCl and indicated differences in activation of antioxidant defense systems between the two cvs. The roots of both cultivars showed a decrease in GR activity with increase in salinity. CAT and APOX activities increased with increasing salt stress in roots of salt-tolerant cultivar Pokkali but decreased and showed no change, respectively, in roots of IR-28 cultivar. POX activity decreased with increasing NaCl concentrations in salt-tolerant Pokkali but increased in IR-28. SOD activity showed no change in roots of both cultivars under increasing salinity. MDA level in the roots increased under salt stress in sensitive IR-28 but showed no change in Pokkali. IR-28 produced higher amount of proline under salt stress than in Pokkali. Increasing NaCl concentration caused a reduction in root fresh weight of Pokkali and root dry weight of IR-28. The results indicate that improved tolerance to salt stress in root tissues of rice plants may be accomplished by increased capacity of antioxidative system.  相似文献   

10.
The comparative alterations of short term NaCl stress and recovery on growth, water relations, ionic composition, lipid peroxidation and antioxidants in roots of two rice cultivars differing in salt tolerance were studied. Exposed for 24 h to increasing (50, 100 and 150 mmol l−1) concentrations of NaCl, roots of 12D Oryza sativa L. cv. Lunishree and cv. Begunbitchi decreased in fresh weight, dry weight and relative water content. Increased Na+ and decreased K+ ion were determined at increasing NaCl concentrations. Both peroxide content and lipid peroxidation measured in terms of MDA level increased and the ratio was higher in Begunbitchi compared to Lunishree. Recovered roots showed lower peroxide and MDA content. Ascorbate and glutathione contents increased in the stressed and recovered roots of Lunishree, but decreased in Begunbitchi with increasing NaCl concentrations. Although SOD, CAT and GR activities decreased in the stressed roots, CAT activity also increased in recovered roots of both the cultivars. The POX activity increased in stressed and recovered roots of both Lunishree and Begunbitchi. Higher free radicals scavenging capacity and more efficient protection mechanism of Lunishree against salt stress, as revealed by the lower level of lipid peroxidation and improved plant water status as well as activities of some of the antioxidants, suggest that significant cultivar differences in response to salt stress in rice are closely related to differences in the activities of antioxidants and ion content. Another possible conclusion is that improved tolerance to salt stress may be accomplished by increased capacity of antioxidative system.  相似文献   

11.
An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 - to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress.  相似文献   

12.
Potato Responds to Salt Stress by Increased Activity of Antioxidant Enzymes   总被引:1,自引:0,他引:1  
To understand the response of potato to salt stress, antioxidant enzyme activities and ion content were analyzed for a sensitive and a tolerant cultivar. Nodal cuttings of the tolerant cultivar, Kennebec, and the sensitive cultivar, Concord, were exposed to media without or with 30, 60, 90 or 120 mmol/L NaCl for 4 weeks. On exposure to NaCl, the length and fresh and dry weight of both shoots and roots of Concord showed greater decrease than those of Kennebec. The decrease in shoot growth was more severe than that of the root for both cultivars. The K+ content of shoots and roots of both cultivars was reduced in a dose-dependent manner by exposure to NaCl; the Na+ content Increased. Activities of ascorbate peroxidase, catalase and glutathione reductase were increased in NaCl-exposed shoots of Kennebec; the corresponding activities inNaCl-exposed shoots of Concord were decreased. Roots of both cultivars showed similar changes in the activities of these enzymes on exposure to NaCl. These studies established that enzyme activities In Concord shoots are inversely related to the NaCl concentration, whereas those in Kennebec do not show a dose dependency, which is also the case for the roots of both cultivars. Our findings suggest that an Increase in activity of antioxidant enzymes, such as ascorbate peroxidase,cetalase and glutathione reductase, can contribute to salt tolerance in Kennebec, a salt resistant cultivar of potato.  相似文献   

13.
We investigated the effects of silicon (Si) on time-dependent changes in root tonoplast H+-ATPase and H+-PPase activities, membrane fatty acid compositions and tonoplast fluidity in two barley (Hordeum vulgare L.) cultivars differing in salt tolerance. Plants were grown in NaCl-free (control) and NaCl-supplied (60 and 120 mM, respectively) nutrient solutions with or without 1.0 mM Si. Plant roots were harvested to isolate tonoplast vesicles for assay of H+-ATPase and H+-PPase activities at days 2, 4, and 6 after treatment in the first experiment and for analysis of membrane fatty acid composition and fluidity at day 4 after treatment in the second experiment. The results showed that tonoplast H+-ATPase and H+-PPase activities in roots of salt-treated plants increased at day 2, which was more obvious at 60 mM NaCl in the salt-tolerant cultivar than in the salt-sensitive cultivar, and then decreased at day 4 and onward. These enzyme activities decreased consistently from days 2 to 6 for treatment with 120 mM NaCl. However, inclusion of 1.0 mM Si significantly enhanced both H+-ATPase and H+-PPase activities in roots of salt stressed barley, which was irrespective of NaCl level or cultivar used. The ratio of unsaturated to saturated fatty acids (U/S) increased under salt stress for both cultivars. Addition of Si to salt treatment increased the ratio of U/S in salt-tolerant cultivar but it did not in salt-sensitive cultivar compared to non-Si-amended salt treatment. Salt treatment decreased tonoplast fluidity of roots of barley significantly compared with control treatment. However, root tonoplast fluidity was significantly lower in the Si-amended salt treatment than in the non-Si-amended salt treatment. These results were in line with the previous findings that Si could help increase antioxidative defense and reduce membrane lipid oxidative damage in barley under salt stress. The possible mechanisms involved in Si-enhanced salt tolerance were discussed with respect to cell membrane integrity, stability and function in barley.  相似文献   

14.
The present investigation evaluated the ability of an antioxidative defense system in terms of the tolerance against salinity-induced oxidative stress and also explored a possible relationship between the status of the components of an antioxidative defense system and the salt tolerance in Indica rice (Oryza sativa L.) genotypes. When the seedlings of a salt-sensitive cultivar was grown in sand cultures containing different NaCl concentrations (7 and 14 dS m?1) for 5–20 days, a substantial increase was observed in the rate of superoxide anion (O 2 ·? ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) which indicated an enhancement in lipid peroxidation. A declination in the level of thiol clearly indicated an increase in the protein oxidation as well as a decline in the reduced forms of ascorbate (AsA) and glutathione (GSH) and the ratios of their reduced to oxidized forms occurred in the salt-sensitive seedlings. Similar treatment caused a very little alteration or no change in the levels of these components in the seedlings of salt-tolerant cultivar. The activity of antioxidative enzymes superoxide dismutase (SOD), its isoform Cu/Zn-SOD and ascorbate peroxidase (APX) increased in both the cultivars against salinity. In salt-sensitive seedlings, the activity of the various enzymes, guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) increased at moderate salinity treatment of 7 dS m?1 NaCl while the activities of these enzymes declined with higher salinity level of 14 dS m?1 NaCl. However, a consistent increase was observed in the activities of these enzymes of salt-tolerant seedlings with an increase in the duration and the level of the salinity treatment. The results suggest that a higher status of antioxidants (AsA and GSH) and a coordinated higher activity of the enzymes (SOD, CAT, GPX, APX, and GR) can serve as the major determinants in the model for depicting salt tolerance in Indica rice seedlings.  相似文献   

15.
以‘津研四号’黄瓜为试材,以30 mmol·L-1 NaHCO3模拟盐碱环境,采用水培法研究了0.2 μmol·L-1外源2,4表油菜素内酯(2,4-epibrassinolide,EBR)对盐碱胁迫下黄瓜幼苗生长和活性氧代谢的影响.结果表明: NaHCO3胁迫显著诱导了叶片及根系中O2的产生和H2O2的积累,导致丙二醛含量和电解质渗透率提高.NaHCO3胁迫下,超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性及还原型抗坏血酸、还原型谷胱甘肽含量随胁迫时间延长呈现先升后降的趋势.外源EBR显著提高了NaHCO3胁迫下黄瓜叶片和根系中抗氧化酶活性、抗氧化物质的含量以及AsA/DHA(双脱氢抗坏血酸)和GSH/GSSG(氧化型谷胱甘肽)比值,维持了植株内的氧化还原平衡,降低了活性氧积累水平,缓解了膜脂过氧化,从而提高了黄瓜幼苗的盐碱耐受性.  相似文献   

16.
以‘津研四号’黄瓜为试材,以30 mmol·L-1NaHCO_3模拟盐碱环境,采用水培法研究了0.2μmol·L-1外源2,4表油菜素内酯(2,4-epibrassinolide,EBR)对盐碱胁迫下黄瓜幼苗生长和活性氧代谢的影响.结果表明:NaHCO_3胁迫显著诱导了叶片及根系中O2-·的产生和H_2O_2的积累,导致丙二醛含量和电解质渗透率提高.NaHCO_3胁迫下,超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性及还原型抗坏血酸、还原型谷胱甘肽含量随胁迫时间延长呈现先升后降的趋势.外源EBR显著提高了NaHCO_3胁迫下黄瓜叶片和根系中抗氧化酶活性、抗氧化物质的含量以及As A/DHA(双脱氢抗坏血酸)和GSH/GSSG(氧化型谷胱甘肽)比值,维持了植株内的氧化还原平衡,降低了活性氧积累水平,缓解了膜脂过氧化,从而提高了黄瓜幼苗的盐碱耐受性.  相似文献   

17.
Lemna minor L. roots were treated with different concentrations of NaCl. Lipid peroxidation was investigated histochemically and biochemically. At higher NaCl concentrations an increase in staining was observed in the root apices as compared to control for lipid peroxidation and loss of membrane integrity as well as an increase in contents of thiobarbituric acid reactive substance and peroxide. Both the non-enzymic antioxidants, ascorbate and glutathione increased with the NaCl concentration in the roots. Whereas an increase in superoxide dismutase, guaiacol peroxidase, and glutathione reductase activities were marked, catalase activity decreased in the roots under NaCl stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress   总被引:12,自引:0,他引:12  
The role of plant antioxidant systems in stress tolerance was studied in leaves of three contrasting wheat genotypes. Drought imposed at two different stages after anthesis resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbic acid content. Antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and catalase significantly increased under water stress. Drought tolerant genotype C 306 which had highest ascorbate peroxidase and catalase activity and ascorbic acid content also showed lowest H2O2 accumulation and lipid peroxidation (malondialdehyde content) under water stress in comparison to susceptible genotype HD 2329 which showed lowest antioxidant enzyme activity and ascorbic acid content and highest H2O2 content and lipid peroxidation. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Superoxide dismutase activity, however, did not show significant differences among the genotypes under irrigated as well as water stress condition. It seems that H2O2 scavenging systems as represented by ascorbate peroxidase and catalase are more important in imparting tolerance against drought induced oxidative stress than superoxide dismutase alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. In this study, the role of SA in improving drought tolerance in two maize cultivars (Zea mays L.) differing in their tolerance to drought was evaluated. The plants were regularly watered per pot and grown until the grain filling stage (R2) under a rainout shelter. At stage R2, parts of the plants were treated with SA, after which drought stress was applied. Leaf samples were harvested on the 10th and 17th days of the drought. Some antioxidant enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, was measured during the drought period. Exogenous SA prevented water loss and delayed leaf rolling in comparison with control leaves in both cultivars. As a consequence of drought stress, lipid peroxidation, measured in terms of malondialdehyde content, was prevented by SA. SA pretreatment induced all antioxidant enzyme activities, and to a greater extent than the control leaves, during drought. SA also caused a reduction in the ascorbate (ASC) and glutathione (GSH) content in two maize cultivars. The H2O2 level was higher in SA pretreated plants than the controls in both cultivars. Pretreatment with SA further enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants in the tolerant cultivar compared with the sensitive cultivar. Results suggested that exogenous SA could help reduce the adverse effects of drought stress and might have a key role in providing tolerance to stress by decreasing water loss and inducing the antioxidant system in plants with leaf rolling, an alternative drought protection mechanism.  相似文献   

20.
Phytotoxicity of aluminum (Al) is the major limiting factor for the crops grown in acid soils rapidly inhibiting root elongation. In this study, changes in root growth, total activity and isozyme patterns of antioxidant enzymes such as peroxidase, ascorbate peroxidase, catalase and glutathione reductase by Al stress were investigated in the roots of naked barley (Hordeum vulgare L. cv. Kwangwhalssalbori). As Al concentration increased up to 500 M, the rooting rate and root elongation substantially decreased. Growth results suggested that this cultivar is an Al-sensitive species. Total activities of antioxidant enzymes generally increased at lower Al concentrations and then gradually decreased at higher Al concentrations. They also increased when the exposure time to Al was extended up to 48 hr. Changes in the isozyme patterns of antioxidant enzymes were investigated byin situ enzyme activity staining on a non-denaturing PAGE gel. They generally coincided with the changes in the total activity in parallel. Changes in the total activity of antioxidant enzymes also coincided with the changes of the root growth. Since growth reduction in the roots by Al stress could be related with the changes in the activities of antioxidant enzymes, these results suggested that Al might cause the oxidative stress in the roots of this cultivar of naked barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号