首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Janus kinases (JAKs) are critical regulators of cytokine pathways and attractive targets of therapeutic value in both inflammatory and myeloproliferative diseases. Although the crystal structures of active JAK1 and JAK2 kinase domains have been reported recently with the clinical compound CP-690550, the structures of both TYK2 and JAK3 with CP-690550 have remained outstanding. Here, we report the crystal structures of TYK2, a first in class structure, and JAK3 in complex with PAN-JAK inhibitors CP-690550 ((3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile) and CMP-6 (tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one), both of which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to that observed in crystal structures of JAK1 and JAK2. Additionally, a complete thermodynamic characterization of JAK/CP-690550 complex formation was completed by isothermal titration calorimetry, indicating the critical role of the nitrile group from the CP-690550 compound. Finally, computational analysis using WaterMap further highlights the critical positioning of the CP-690550 nitrile group in the displacement of an unfavorable water molecule beneath the glycine-rich loop. Taken together, the data emphasize the outstanding properties of the kinome-selective JAK inhibitor CP-690550, as well as the challenges in obtaining JAK isozyme-selective inhibitors due to the overall structural and sequence similarities between the TYK2, JAK1, JAK2 and JAK3 isozymes. Nevertheless, subtle amino acid variations of residues lining the ligand-binding cavity of the JAK enzymes, as well as the global positioning of the glycine-rich loop, might provide the initial clues to obtaining JAK-isozyme selective inhibitors.  相似文献   

4.
Janus kinases (JAKs) are considered promising targets for the treatment of autoimmune diseases including rheumatoid arthritis (RA) due to their important role in multiple cytokine receptor signaling pathways. Recently, several JAK inhibitors have been developed for the treatment of RA. Here, we describe the identification of the novel orally bioavailable JAK inhibitor 18, peficitinib (also known as ASP015K), which showed moderate selectivity for JAK3 over JAK1, JAK2, and TYK2 in enzyme assays. Chemical modification at the C4-position of lead compound 5 led to a large increase in JAK inhibitory activity and metabolic stability in liver microsomes. Furthermore, we determined the crystal structures of JAK1, JAK2, JAK3, and TYK2 in a complex with peficitinib, and revealed that the 1H-pyrrolo[2,3–b]pyridine-5-carboxamide scaffold of peficitinib forms triple hydrogen bonds with the hinge region. Interestingly, the binding modes of peficitinib in the ATP-binding pockets differed among JAK1, JAK2, JAK3, and TYK2. WaterMap analysis of the crystal structures suggests that unfavorable water molecules are the likely reason for the difference in orientation of the 1H-pyrrolo[2,3-b]pyridine-5-carboxamide scaffold to the hinge region among JAKs.  相似文献   

5.
The Janus kinase family of proteins, with four mammalian members (JAK1, JAK2, JAK3 and TYK2), plays an essential role in the signal transduction pathway from non-catalytic cytokine receptors to the nucleus. We recently reported the involvement of ETV6-JAK2 fusion genes in the development of leukemia of both lymphoid and myeloid origin. Dominant missense mutations of hopscotch, a Drosophila JAK homologue, causing leukemia-like defects were described. One of these mutations affected a conserved residue of the kinase- like JH2 domain and the introduction of this mutation in murine Jak2 resulted in the constitutional activation of its kinase activity. In order to further analyze its role in leukemogenesis, we cloned human JAK2 and determined its genomic organization. Twenty-four exons spanning a region of approximately 150 kb were identified. A mutation analysis of the exons 13 to 19, encoding the kinase-like JH2 domain failed to detect activating mutations in leukemia samples, suggesting that this is a rare event in human leukemia.  相似文献   

6.
The Janus family of tyrosine kinases (JAKs) plays a critical role in signal transduction by members of the cytokine receptor superfamily. In response to ligand-receptor interaction, these nonreceptor tyrosine kinases are rapidly phosphorylated and activated, triggering tyrosine phosphorylation and activation of downstream signaling intermediates. Upon binding to its receptor, the product of the proto-oncogene c-mpl, thrombopoietin (TPO) activates both JAK2 and TYK2 in multiple cell lines as well as megakaryocytes and platelets. To study whether one or both of these kinases are essential for TPO signal transduction, we engineered a parental human sarcoma cell line (2C4) as well as sarcoma cell lines that are deficient in JAK2 expression (gamma2A) or TYK2 expression (U1A) to express the wild-type Mpl receptor. The ability of TPO to induce tyrosine phosphorylation of Mpl and multiple intracellular substrates in each cell line was then examined. Our results demonstrate that JAK2-deficient cells (gamma2A-Mpl) are unable to initiate TPO-mediated signaling. In contrast, cells that are TYK2-deficient (U1A-Mpl) are able to induce tyrosine phosphorylation of Mpl, JAK2, STAT3, and Shc as efficiently as parental cells (2C4-Mpl). These data indicate that JAK2 is an essential component of Mpl signaling and that, in the absence of JAK2, TYK2 is incapable of initiating TPO-induced tyrosine phosphorylation.  相似文献   

7.
JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5′-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.  相似文献   

8.
JAK2 is a cytoplasmic tyrosine kinase whose gene is located on chromosome 9p24. It is involved in the regulation of different cytokines and growth factors and plays an important role in the diagnosis and treatment of myeloproliferative neoplasms (Smith et al., 2008). Translocations involving the JAK2 locus are uncommon with just a few cases described in the literature, and they usually lead to a fusion protein with JAK2 (Patnaik et al., 2010). Chromosome 9p24 abnormalities have been described in myeloid and lymphoid neoplasms including chronic myelogenous leukemia (CML), acute megakaryoblastic leukemia, CD10+ B-cell acute lymphoblastic leukemia, T-cell ALL and chronic myeloproliferative disorders (CMD) (Smith et al., 2008; Lacronique et al., 1997). Although the breakpoints of each translocation are known, characterization of the partner gene has not been done in many of the cases reported due to insufficient sample or other factors. In the present study we review all translocations involving JAK2 that have been reported in the literature.  相似文献   

9.
10.
Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed T cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia.  相似文献   

11.
12.
We designed a series of anilino-indoylmaleimides based on structural elements from literature JAK3 inhibitors 3 and 4, and our lead 5. These new compounds were tested as inhibitors of JAKs 1, 2 and 3 and TYK2 for therapeutic intervention in rheumatoid arthritis (RA). Our requirements, based on current scientific rationale for optimum efficacy against RA with reduced side effects, was for potent, mixed JAK1 and 3 inhibition, and selectivity over JAK2. Our efforts yielded a potent JAK3 inhibitor 11d and its eutomer 11e. These compounds were highly selective for inhibition of JAK3 over JAK2 and TYK. The compounds displayed only modest JAK1 inhibition.  相似文献   

13.
The interleukin-10 (IL-10) activation of Janus kinase (JAK) family members (JAK1/TYK2) and IL-10E1 is subsequently inactivated by approximately 3-4 h in primary prostate tumor lines. We examined the effect of proteasome inhibition on IL-10 activation of the IL-10E1 pathway following stimulation of HPCA-10a cells. Treatment of HPCA-10a cells with the proteasome inhibitor, N-acetyl-L-leucinyl-L-leucinyl-norleucinal (LLnL), led to stable tyrosine phosphorylation of the IL-10 receptor and IL-10E1 following stimulation. Further investigation showed that these stable phosphorylation events were the result of prolonged activation of JAK1 and TYK2 plus IL-10E1. IL-10E1 signaling normally induced the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and LLnL treatment of the HPCA-10a and HPCA-10c cells significantly enhanced IL-10 induction of TIMP-1 levels to block tumor cell invasion in modified Boyden chamber invasion assays. These observations were confirmed using pharmacologic inhibitors by Western blot and ELISAs. In the presence of LLnL, stable phosphorylation of IL-10E1 and induction of TIMP-1 was abrogated if the tyrosine kinase inhibitor, staurosporine, was added. The effect of staurosporine on IL-10E1 phosphorylation and TIMP-1 could be overcome if the phosphatase inhibitor, vanadate, was also added, suggesting that phosphorylated IL-10E1 could be stabilized by phosphatase, but not by proteasome inhibition. These observations are consistent with the hypothesis that proteasome-mediated protein degradation can modulate the activity of the IL-10E1 pathway and TIMP-1 induction by regulating the deactivation of JAK1/TYK2.  相似文献   

14.
In the Philadelphia positive bcr negative acute leukemias (Ph1+bcr- AL), the chromosomal breakpoints on chromosome 22 have been shown clustered within 10.8kb (bcr2) and 5kb (bcr3) fragments of the first intron of the BCR gene. We previously reported that the breakpoints were localized in Alu repeats on chromosomes 9 and 22 in a Ph1+bcr- acute lymphoblastic leukemia with a rearrangement involving bcr2. Molecular data of two other Ph1 translocations, one a Ph1+bcr- acute myeloblastic leukemia in the bcr2 region, and the other an acute lymphoblastic leukemia in the bcr3 region are presented. In the former, the breakpoints on chromosomes 9 and 22 are localized in Alu repeats, in regions with two inverted Alu sequences, as in our previously reported case. In the second leukemia, the breakpoints are not located in Alu sequences, but such repeats are found in their vicinity. The implications of these findings are discussed.  相似文献   

15.
16.
17.
摘要 目的:分析血清糖基磷脂酰肌醇锚附着蛋白1(GPAA1)、铁蛋白(SF)、骨桥蛋白(OPN)与儿童急性淋巴细胞白血病危险度的关系及对血栓发生风险的评估效能。方法:选择我院自2017年1月至2022年12月接诊的112例急性淋巴细胞白血病患儿作为观察组,另选112例性别、年龄与观察组相匹配的健康体检儿童作为对照组。检测两组血清GPAA1、SF、OPN表达水平,分析不同危险度的急性淋巴细胞白血病患儿血清GPAA1、SF、OPN表达水平的差异性,观察急性淋巴细胞白血病患儿的血栓发生情况,通过受试者工作特征曲线(ROC)下面积(AUC)评价血清GPAA1、SF、OPN预测急性淋巴细胞白血病患儿发生血栓的效能。结果:观察组血清GPAA1、SF、OPN表达水平均高于对照组(P<0.05);在低危、中危和高危的急性淋巴细胞白血病患儿中,血清GPAA1、SF、OPN表达水平有差异(P<0.05);经Spearman相关性分析,血清GPAA1、SF、OPN表达水平与儿童急性淋巴细胞白血病危险度呈正相关(P<0.05);在112例急性淋巴细胞白血病患儿中,发生血栓12例,占10.71%;经多因素Logistic回归分析,血清GPAA1、SF、OPN均是急性淋巴细胞白血病患儿发生血栓的独立预测因素(P<0.05);经ROC曲线分析,血清GPAA1、SF联合OPN预测急性淋巴细胞白血病患儿发生血栓的AUC为0.901。结论:血清GPAA1、SF、OPN与儿童急性淋巴细胞白血病危险度密切相关,联合预测患儿发生血栓的效能较好,对此病的诊治具有重要指导意义。  相似文献   

18.
19.
JAK1 and JAK3 are recurrently mutated in acute lymphoblastic leukemia. These tyrosine kinases associate with heterodimeric cytokine receptors such as IL-7 receptor or IL-9 receptor, in which JAK1 is appended to the specific chain, and JAK3 is appended to the common gamma chain. Here, we studied the role of these receptor complexes in mediating the oncogenic activity of JAK3 mutants. Although JAK3V674A and the majority of other JAK3 mutants needed to bind to a functional cytokine receptor complex to constitutively activate STAT5, JAK3L857P was unexpectedly found to not depend on such receptor complexes for its activity, which was induced without receptor or JAK1 co-expression. Introducing a mutation in the FERM domain that abolished JAK-receptor interaction did not affect JAK3L857P activity, whereas it inhibited the other receptor-dependent mutants. The same cytokine receptor independence as for JAK3L857P was observed for homologous Leu857 mutations of JAK1 and JAK2 and for JAK3L875H. This different cytokine receptor requirement correlated with different functional properties in vivo and with distinct sensitivity to JAK inhibitors. Transduction of murine hematopoietic cells with JAK3V674A led homogenously to lymphoblastic leukemias in BALB/c mice. In contrast, transduction with JAK3L857P induced various types of lymphoid and myeloid leukemias. Moreover, ruxolitinib, which preferentially blocks JAK1 and JAK2, abolished the proliferation of cells transformed by the receptor-dependent JAK3V674A, yet proved much less potent on cells expressing JAK3L857P. These particular cells were, in contrast, more sensitive to JAK3-specific inhibitors. Altogether, our results showed that different JAK3 mutations induce constitutive activation through distinct mechanisms, pointing to specific therapeutic perspectives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号