首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to determine the molecular mechanism involved in the stimulation of the pig kidney proximal tubule Na+-ATPase by adenosine (Ado). To study the role of A2 Ado receptors, we added in all experiments 10(-6)M DPCPX, an A1 receptor-selective antagonist, since we have previously shown that Ado inhibits the enzyme activity through this receptor. Ado increased the Na+-ATPase activity with maximal effect observed at 10(-6)M. The presence of both A(2A) and A(2B) receptors were demonstrated by immunoblotting using specific polyclonal antibodies. The stimulatory effect of Ado was completely abolished by 5 x 10(-9)M DMPX, an antagonist of A2 receptor, and 10(-7)M SCH 58261, an A(2A) receptor-selective antagonist. DMPA (10(-7)M), a specific agonist of A(2A) receptor mimicked the stimulatory effect of Ado. Involvement of a Gs protein/adenylate cyclase/PKA pathway was evidenced by: (a) the reversion of Ado-induced effect by GDPbetaS; (b) stimulation of the Na+-ATPase activity in a similar and non-additive manner to Ado by 10(-8)M cholera toxin, 10(-7)M GTPgammaS, 10(-6)M forskolin, 10(-7)M cAMP or 1.25 U catalytic subunit of PKA; (c) the reversion of the stimulatory effect of Ado by 10(-8)M PKA inhibitor peptide; (d) Ado-produced two-fold increase of the PKA activity, which was completely reversed by 10(-6)M DMPX. These are the first evidences showing the modulation of a renal primary active sodium transporter by Ado through A(2A) receptor.  相似文献   

2.
In previous papers we showed that Ang II increases the proximal tubule Na+-ATPase activity through AT1/PKC pathway [L.B. Rangel, C. Caruso-Neves, L.S. Lara, A.G. Lopes, Angiotensin II stimulates renal proximal tubule Na+-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316, L.B.A. Rangel, A.G. Lopes, L.S. Lara, C. Caruso-Neves, Angiotensin II stimulates renal proximal tubule Na+)-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316]. In the present paper, we study the involvement of PI-PLCbeta on the stimulatory effect of angiotensin II (Ang II) on the proximal tubule Na+-ATPase activity. Western blotting assays, using a polyclonal antibody for PI-PLCbeta, show a single band of about 150 KDa, which correspond to PI-PLCbeta isoforms. Ang II induces a rapid decrease in PIP2 levels, a PI-PLCbeta substrate, being the maximal effect observed after 30 s incubation. This effect of Ang II is completely abolished by 5 x 10(-8) M U73122, a specific inhibitor of PI-PLCbeta. In this way, the effect of 10(-8) M Ang II on the proximal tubule basolateral membrane (BLM) Na+-ATPase activity is completely abolished by 5 x 10(-8) M U73122. The increase in diacylglycerol (DAG) concentration, an product of PI-PLCbeta, from 0.1 to 10 nM raises the Na+-ATPase activity from 6.1+/-0.2 to 13.1+/-1.8 nmol Pi mg(-1) min(-1). This effect is similar and non-additive to that observed with Ang II. Furthermore, the stimulatory effect of 10 nM DAG is completely reversed by 10(-8) M calphostin C (Calph C), an inhibitor of PKC. Taken together these data indicate that Ang II stimulates the Na+-ATPase activity of proximal tubule BLM through a PI-PLCbeta/PKC pathway.  相似文献   

3.
We showed previously that angiotensin-(1-7) [Ang-(1-7)] reversed stimulation of proximal tubule Na+-ATPase promoted by angiotensin II (Ang II) through a d-ala7-Ang-(1-7) (A779)-sensitive receptor. Here we investigated the signaling pathway coupled to this receptor. According to our data, Ang-(1-7) produces a MAS-mediated reversal of Ang II-stimulated Na+-ATPase by a Gs/PKA pathway because: (1) the Ang-(1-7) effect is reversed by GDPβS, an inhibitor of trimeric G protein and Gs polyclonal antibody. Cholera toxin, an activator of Gs protein, mimicked it; (2) in the presence of Ang II, Ang-(1-7) increased the PKA activity 10-fold; (3) the peptide inhibitor of PKA blocked the Ang-(1-7) effect on Ang II-stimulated Na+-ATPase; (4) Ang-(1-7) reverses the Ang II-stimulated PKC activity; (5) cAMP mimicked the Ang-(1-7) effect on the Ang II-stimulated Na+-ATPase. Our results provide new understanding about the signaling mechanisms coupled to MAS receptor-mediated renal Ang-(1-7) effects.  相似文献   

4.
In astrocytes the activity of the Na+,K(+)-ATPase pump maintains an inwardly directed electrochemical sodium gradient used by the Na+-dependent transporters and regulates the extracellular K+ concentration essential for neuronal excitability. We show here that incubation of cultured rat astrocytes with angiotensin II (Ang II) modulates Na+,K(+)-ATPase activity, in a dose- and time-dependent manner. Na+,K(+)-ATPase activation was mediated by binding of Ang II to AT1 receptors as it was completely blocked by DuP 753, a specific AT1 receptor subtype antagonist. Stimulation of Na+,K(+)-ATPase activity by Ang II was dependent on protein kinase C (PKC) activation because PKC antagonists abolished the inducing effect of Ang II and the PKC activator phorbol 12-myristate 13-acetate enhanced transporter activity. Ang II stimulated translocation of PKC-delta but not that of other PKC isoforms from the cytosol to the plasma membrane. These results indicate that the activity of Na+,K(+)-ATPase in astrocytes is increased by physiological concentrations of Ang II and that the AT1 receptor subtype mediates the Na+,K(+)-ATPase response to Ang II via PKC-delta activation.  相似文献   

5.
Recently, we demonstrated that the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubules is reversed, in a dose-dependent manner, by Ang-(1-7) [Biochim. Biophys. Acta 1467 (2000) 189]. In the present paper, we characterized the receptor involved in this phenomenon. The preincubation of the Na(+)-ATPase with 10(-8) M Ang II increases the enzyme activity from 7.50+/-0.02 (control) to 12.40+/-1.50 nmol Pi mg(-1) min(-1) (p<0.05). Addition of 10(-9) M Ang-(1-7) completely reverts this effect returning the ATPase activity to the control level. This effect seems to be specific to Ang-(1-7) since Ang III (10(-12)-10(-8) M) does not modify the stimulation of the renal proximal tubule Na(+)-ATPase activity by Ang II. Saralasin abolishes the Ang-(1-7) effect in a dose-dependent manner being the maximal effect obtained at 10(-11) M. The increase in A779 concentration (from 10(-12) to 10(-7) M), a specific Ang-(1-7) antagonist, also abolishes the Ang-(1-7) effect. On the other hand, PD123319 (10(-8)-10(-6) M), an AT(2) antagonist receptor, and losartan (10(-12)-10(-7) M), an AT(1) antagonist receptor, does not modify the effect of Ang-(1-7). Taken together, these data indicate that Ang-(1-7) reverts the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubule through a A779-sensitive receptor.  相似文献   

6.
Recently, our group described an AT(1)-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na(+)-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na(+)-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na(+)-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na(+)-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

7.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+ -ATPase activity but does not change (Na+ +K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+ -ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+ -ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C beta (PI-PLCbeta)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+ -independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCbeta/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

8.
Recently, our group described a B1-mediated stimulatory effect of des-Arg(9)-bradykinin (DABK) on the Na(+)-ATPase activity of proximal tubule basolateral membranes (BLM) [Biochim. Biophys. Acta 1431 (1999) 483.]. Data in the present report suggest the participation of a phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway as the molecular mechanism of DABK-mediated stimulation of the Na(+)-ATPase activity since (i) 10(-8) M DABK activates PI-PLC activity; (ii) 10(-9) M U73122, a PI-PLC inhibitor, abolishes the effect of 10(-8) M DABK on the Na(+)-ATPase activity; (iii) 10(-8) M DABK increases phosphoprotein formation by 34%. This effect is completely reversed by 10(-7) M calphostin C, an inhibitor of PKC; (iv) 20 ng/ml TPA, an activator of PKC, and 10(-8) M DABK stimulate the Na(+)-ATPase activity in a similar and nonadditive manner. Furthermore, the effect of 10(-8) M DABK is completely reversed by calphostin C; (v) 10(-8) M DABK increases phosphoserine residue levels by 54%. This effect is completely reversed by 10(-7) M calphostin C.  相似文献   

9.
We examined the dependence of rat renal Na+, K+-ATPase activity on protein kinase C (PKC) stimulation. Infusion of either phorbol 12, 13-dibutyrate (PDBu) or phorbol 12-myristate 13-acetate (PMA) into rat abdominal aorta resulted in dose-dependent changes of renal cortical Na+, K+-ATPase activity. Low doses of these esters (3 x 10(-11) mol/kg/min) increased activity of Na+, K+-ATPase whereas high doses (3 x 10(-9) mol/kg/min) decreased it. The changes in Na+, K+-ATPase activity induced by PDBu and PMA were prevented by staurosporine, a PKC inhibitor. 4Alpha phorbol didecanoate (4alpha PDD), phorbol ester which does not activate PKC had no effect on cortical Na+, K+-ATPase. PDBu and PMA did not change Na+, K+-ATPase activity in the renal medulla. The stimulatory effect of PDBu (3 x 10(-11) mol/kg/min) was neither mimicked by amphotericin B, a sodium ionophore nor blocked by amiloride, an inhibitor of Na+/H+-exchanger. The inhibitory effect of 3 x 10(-9) mol/kg/min PDBu was not mimicked by amiloride indicating that the observed effects of PKC stimulation are not secondary to alterations in intracellular sodium concentration. The inhibitory effect of PDBu was prevented by infusion of ethoxyresorufin, an inhibitor of cytochrome P450-dependent arachidonate metabolism. These results suggest that the inhibitory effect of PKC on renal cortical Na+, K+-ATPase is mediated by cytochrome P450-dependent arachidonate metabolites.  相似文献   

10.
Electrogenic sodium pump (Na(+)-K(+)-ATPase) maintains intracellular ionic concentration and controls membrane potential, Therefore, we analyzed the modulation of Na(+)-K(+)-ATPase activity by the endothelium, cyclic AMP-protein kinase A (cAMP-PKA), protein kinase C (PKC) and nitric oxide-cyclic GMP-protein kinase G (NO-cGMP-PKG) in isolated rat thoracic aortas. The potassium-induced relaxation in arteries incubated in K(+)-free solution was used as a functional indicator of Na(+)-K(+)-ATPase activity for ounbain abolished the potassium-induced relaxation in rat aortas. Potasslium-induced relaxations after removal of the endothelium were moderately blunted in these preparations. In the presence of N(omega)-nitro-L-arginine methyl ester, but not indomethacin, the potassium-induced relaxation was also inhibited. Similar inhibitions of potassium-induced relaxations were observed in aortas treated with 8-bromo-cAMP and phorbol 12-myristate 13-acetate (PMA). Although inhibitors of PKA and PKC individually did not affect the potassium-induced relaxation, the combination of both inhibitors significantly potentiated that relaxation. In contrast to 8-bromo, cAMP and PMA, 8-bromo-cGMP enhanced the potassium-induced relaxation whereas 1H-[1,2,4}oxadiazolo[4,3-a]quinoxalin-1-one attenuated that relaxation. These results suggested that endothelium is a functional stimulator of the Na(+)-K(+)-ATPase activity. In addition, cAMP-PKA and PKC pathways inhibited the sodium pump while the NO-cGMP pathway stimulated this pump in the vascular bed.  相似文献   

11.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from proximal tubule basolateral membranes by cAMP. An increase in dibutyryl-cAMP (d-cAMP) concentration from 10(-8) to 5x10(-5) M stimulates the ouabain-insensitive Na(+)-ATPase activity. The ATPase activity increases from 6.0+/-0.4 to 10.1+/-0.7 nmol Pi mg(-1) min(-1), in the absence and presence of 5x10(-6) M d-cAMP, respectively. Similarly, the addition of cholera toxin (CTX), forskolin (FSK) or guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) also increases the Na(+)-ATPase activity in a dose-dependent manner, with maximal effect at 10(-8) M, 10(-6) M and 10(-7) M, respectively. The effect of 10(-8) M CTX is not additive to the effect of GTPgammaS, and is completely abolished by 200 microM guanosine 5'-O-(2-thiodiphosphate). The stimulatory effects of CTX and FSK on the Na(+)-ATPase activity are accompanied by an increase in cAMP formation by the basolateral membranes of the proximal tubule cells. Furthermore, 10(-8) M protein kinase A peptide inhibitor (PKAi) completely abolishes the stimulatory effect of 5x10(-6) M d-cAMP or 10(-4) M FSK on the Na(+)-ATPase activity. Incubation of the basolateral membranes with [gamma-(32)P]ATP in the presence of d-cAMP or FSK increases the global hydroxylamine-resistant phosphorylation and especially promotes an increase in phosphorylation of protein bands of approximately 100 and 200 kDa. This stimulation is not seen when 10(-8) M PKAi is added simultaneously. Taken together these data suggest that activation of a cAMP/PKA pathway modulates the Na(+)-ATPase activity in isolated basolateral membranes of the proximal tubule.  相似文献   

12.
Angiotensin II (Ang II) increases the cytosolic Ca2+ concentration in different cell types. In this study, we investigate the effect of Ang II on the Ca2+ ATPase of purified basolateral membranes of kidney proximal tubules. This enzyme pumps Ca2+ out of the cytosol in a reaction coupled to ATP hydrolysis, and it is responsible for the fine-tuned regulation of cytosolic Ca2+ activity. Ca2+-ATPase activity is inhibited by picomolar concentrations of Ang II, with maximal inhibition being attained at approximately 50% of the control values. The presence of raising concentrations (10(-11) to 10(-7) M) of losartan (an AT1-receptor antagonist) or PD123319 (an AT2-receptor antagonist) gradually reverts inhibition by Ang II. Both the phospholipase C (PLC) inhibitor U-73122 (10(-6) M) and the inhibitor of protein kinase C (PKC) staurosporine (10(-7) M) prevent inhibition of the Ca2+ pump by Ang II. Incubation of the previously isolated membranes with a PKC activator-the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (10(-8) M)-mimics the inhibition found with Ang II, and the effects of the compounds are not additive. Taken as a whole, these results indicate the Ang II inhibits Ca2+-ATPase by activation of a PKC system present in primed state in these membranes after binding of the hormone to losartan- and PD123319-sensitive receptors coupled to a PLC. Therefore, inhibition of the basolateral membrane Ca2+-ATPase by kinase-mediated phosphorylation appears to be one of the pathways by which Ang II promotes an increase in the cytosolic Ca2+ concentration of proximal tubule cells.  相似文献   

13.
Recently, we demonstrated that bradykinin (BK) counteracts the stimulatory effect of Ang-(1-7) on the Na(+)-ATPase activity from basolateral membrane of the proximal tubule through B2 receptor. In the present paper, the signaling pathway involved in the inhibitory response of the Na(+)-ATPase activity to BK was investigated. The following results indicate that the phospholipase A2 (PLA2)/COX/prostaglandin E (PGE2) pathway is implicated in this process: (1) The inhibitory effect of BK on Ang-(1-7)-stimulated enzyme is abolished in a dose-dependent manner by quinacrine (10(-9)-10(-6)M), a nonspecific PLA2 inhibitor, and by PACOCF3 (10(-7)M), an inhibitor of a Ca(2+)-independent PLA2. However, AACOCF3 (2 x 10(-4) M), an inhibitor of the cytosolic PLA2, does not modify the inhibitory effect of BK. (2) The inhibitory effect of BK on the Ang-(1-7)-stimulated enzyme is reversed by cyclooxygenase (COX) inhibitors diclofenac (10(-12) M) and indomethacin (10(-12) M). (3) PGE2 (10(-12)-10(-5) M) inhibits the Na(+)-ATPase activity in a dose dependent manner. (4)The inhibitory effects of PGE2 and BK on the Na(+)-ATPase activity are not cumulative. (5) PGE2 (10(-12)-10(-8) M) counteracts the stimulatory effect of Ang-(1-7) on the enzyme activity in a dose-dependent manner.  相似文献   

14.
We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca(2+)-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)α protein structurally linked to AT(2)R--as revealed by their co-immunoprecipitation--mimicked the effect of Ang-(3-4) on Ca(2+)-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi(5-24) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca(2+)-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace (3)H-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca(2+)-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II.  相似文献   

15.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

16.
Recent evidence suggests that vasoconstrictive substances, including angiotensin II (Ang II), may function as a vascular smooth muscle growth promoting substance and may contribute to vascular hypertrophy in hypertension. Atrial natriuretic polypeptide (ANP) is known to be a physiological antagonist to Ang II in blood pressure and fluid homeostasis. Moreover, we have demonstrated that ANP can attenuate Ang II's action on vascular hypertrophy. In this study, we investigated the potential molecular mechanisms for the interaction of ANP and Ang II on vascular cell growth. Ang II dose-dependently induced RNA synthesis in post confluent cultured rat aortic smooth muscle (RASM) cells. ANP (10(-7) M) inhibited the hypertrophic effect of Ang II at the concentration of 10(-10) - 10(-8) M) but exerted no effect on the action of higher doses (10(-7) - 10(-6) M) of Ang II. Ang II (10(9) - 10(-8) M) and a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA, 10(-8) M) rapidly induced c-fos as well as c-Jun and Jun-B mRNA expression in RASM cells. ANP (10(-7) M) itself had no apparent effect on the expression of these protooncogenes. Furthermore, ANP did not inhibit the induction of these protooncogenes by Ang II or PMA. Paradoxically, ANP (10(-7) M) significantly enhanced c-fos mRNA expression induced by Ang II and PMA. However, the chloramphenicol acetyl transferase (CAT) assay using a CAT expression vector containing the AP-1 binding element showed that ANP had no effect on the basal and PMA-stimulated AP-1 activity in transfected RASM cells. We conclude, therefore, that the inhibitory effect of ANP on the growth of vascular smooth muscle cells in vitro does not occur through the regulation of these protooncogene expressions.  相似文献   

17.
一氧化氮在血管紧张素Ⅱ激活蛋白激酶C中的作用   总被引:7,自引:0,他引:7  
Fu SG  Xie XJ  Ji LM  Liu PQ  Pan JY  Lu W 《生理学报》2003,55(1):53-57
实验在培养新生大鼠心肌细胞中检测NO前体L-精氨酸(L-Arg)和NO供体硝普钠(SNP)对血管紧张素Ⅱ(AngⅡ)激活蛋白激酶C(PKC)的作用,以探讨心肌细胞PKC水平的信号转导途径,实验结果如下:(1)无血清DMEM培养心肌细胞24h后加入AngⅡ,PKC活性呈剂量依赖性增高;(2)培养基中加入L-Arg,PKC活性呈剂量依赖性降低;(3)用L-Arg100μmol/L进行预处理,30min后分别加入AngⅡ0.1μmol/L或PMA10μmol/L,PKC活性均明显降低,与单纯AngⅡ组和单纯PMA组相比均有显著性差异;用NOS抑制剂L-NAME预处理后,再加入L-Arg,可明显阻断L-Arg对上述两个效应的影响;(4)培养液中加入NO供体SNP,PKC活性呈剂量依赖性地降低;(5)用SNP10μmol/L预处理心肌细胞,5min后分别加入AngⅡ或PMA,PKC活性分别与单纯AngⅡ和单纯PMA组相比均明显降低。以上结果表明,AngⅡ能剂量依赖性激活PKC,而NO可剂量依赖性抑制PKC活性;NOS参与L-Arg抑制AngⅡ或PMA激活PKC的作用。这些观察提示,NO抑制AngⅡ对心肌细胞的作用可能是通过抑制PKC活性实现的,PKC可能是NO和AngⅡ在心肌细胞内信号转导的交汇点(cross talk)。  相似文献   

18.
Angiotensin-(1-7) (Ang-(1-7)) modulates the Na+-ATPase, but not the Na+,K+-ATPase activity present in pig kidney proximal tubules. The Na+-ATPase, insensitive to ouabain, but sensitive to furosemide, is stimulated by Ang-(1-7) (68% by 10(-9) M), in a dose-dependent manner. This effect is due to an increase in Vmax, while the apparent affinity of the enzyme for Na+ is not modified. Saralasin, a general angiotensin receptor antagonist, abolishes the stimulation, demonstrating that the Ang-(1-7) effect is mediated by receptor. The Ang-(1-7) stimulatory effect is not changed by either PD 123319, an AT2 receptor antagonist, or A779, an Ang-(1-7) receptor antagonist. On the other hand, increasing the concentration of the AT1 receptor antagonist losartan from 10(-11) to 10(-9) M, reverses the Ang(1-7) stimulation completely. A further increase to 10(-3) M losartan reverses the Na+-ATPase activity to a level similar to that obtained with Ang-(1-7) (10(-9) M) alone. The stimulatory effect of Ang-(1-7) at 10(-9) M is similar to the effect of angiotensin II (AG II) alone. However, when the two peptides are both present, Na+-ATPase activity is restored to control values. These data suggest that Ang-(1-7) selectively modulates the Na+-ATPase activity present in basolateral membranes of kidney proximal tubules through a losartan-sensitive receptor. This receptor is probably different from the receptor involved in the stimulation of the Na+-ATPase activity by angiotensin II.  相似文献   

19.
Reduced transport of amino acids from mother to fetus can lead to fetal intrauterine growth restriction (IUGR). The activities of several amino acid transport systems, including system A, are decreased in placental syncytiotrophoblast of IUGR pregnancies. Na(+)-K(+)-ATPase activity provides an essential driving force for Na(+)-coupled system A transport, is decreased in the placenta of IUGR pregnancies, and is decreased by angiotensin II in several tissues. Several reports have shown activation of the fetoplacental renin-angiotensin system (RAS) in IUGR. We investigated the effect of angiotensin II on placental system A transport and Na(+)-K(+)-ATPase activity in placental villi. Placental system A activity in single primary villous fragments was measured as the Na(+)-dependent uptake of alpha-(methylamino)isobutyric acid, and Na(+)/K(+) ATPase activity was measured as ouabain-sensitive uptake of (86)rubidium. Angiotensin II decreased system A activity in a concentration-dependent fashion (10-500 nmol/l). Angiotensin II type 1 receptor (AT1-R) antagonists losartan and AT1-R anti-peptide blocked the angiotensin II effect, but the angiotensin II type 2 receptor antagonist PD-123319 was without effect. System A activity was not altered by preincubation with AT1-R-independent vasoconstrictors, and antioxidants did not prevent the decrease in activity mediated by angiotensin II. Angiotensin II decreased Na(+)-K(+)-ATPase activity by an AT1-R dependent mechanism, and inhibition of Na(+)-K(+)-ATPase activity decreased system A activity in a dose-response fashion. These data suggest that angiotensin II, via AT1-R signaling, decreases system A activity by suppressing Na(+)-K(+)-ATPase in human placental villi, consistent with possible adverse effects of enhanced placental RAS on fetal growth.  相似文献   

20.
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the presence of Sch 28080 to block ouabain-sensitive H(+),K(+)-ATPase and improve specificity of the assay. Dibutyryl-cyclic AMP (db-cAMP) administered at a dose of 10(-7) mol/kg per min and 10(-6) mol/kg per min increased Na(+),K(+)-ATPase activity in the renal cortex by 34% and 42%, respectively, and decreased it in the renal medulla by 30% and 44%, respectively. db-cAMP infused at 10(-6) mol/kg per min increased the activity of cortical ouabain-sensitive H(+),K(+)-ATPase by 33%, and medullary ouabain-sensitive H(+),K(+)-ATPase by 30%. All the effects of db-cAMP were abolished by a specific inhibitor of protein kinase A, KT 5720. The stimulatory effect on ouabain-sensitive H(+),K(+)-ATPase and on cortical Na(+),K(+)-ATPase was also abolished by brefeldin A which inhibits the insertion of proteins into the plasma membranes, whereas the inhibitory effect on medullary Na(+),K(+)-ATPase was partially attenuated by 17-octadecynoic acid, an inhibitor of cytochrome p450-dependent arachidonate metabolism. We conclude that the cAMP-PKA pathway stimulates Na(+),K(+)-ATPase in the renal cortex as well as ouabain-sensitive H(+),K(+)-ATPase in the cortex and medulla by a mechanism requiring insertion of proteins into the plasma membrane. In contrast, medullary Na(+),K(+)-ATPase is inhibited by cAMP through a mechanism involving cytochrome p450-dependent arachidonate metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号