首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Wnt signaling is known to be required for the normal development of the vertebrate midbrain and hindbrain, but genetic loss of function analyses in the mouse and zebrafish yield differing results regarding the relative importance of specific Wnt loci. In the zebrafish, Wnt1 and Wnt10b functionally overlap in their control of gene expression in the ventral midbrain-hindbrain boundary (MHB), but they are not required for the formation of the MHB constriction. Whether other wnt loci are involved in zebrafish MHB development is unclear, although the expression of at least two wnts, wnt3a and wnt8b, is maintained in wnt1/wnt10b mutants. In order to address the role of wnt3a in zebrafish, we have isolated a full length cDNA and examined its expression and function via knockdown by morpholino antisense oligonucleotide (MO)-mediated knockdown. The expression pattern of wnt3a appears to be evolutionarily conserved between zebrafish and mouse, and MO knockdown shows that Wnt3a, while not uniquely required for MHB development, is required in the absence of Wnt1 and Wnt10b for the formation of the MHB constriction. In zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b, the expression of engrailed orthologs, pax2a and fgf8 is not maintained after mid-somitogenesis. In contrast to acerebellar and no isthmus mutants, in which midbrain and hindbrain cells acquire new fates but cell number is not significantly affected until late in embryogenesis, zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b undergo extensive apoptosis in the midbrain and cerebellum anlagen beginning in mid-somitogenesis, which results in the absence of a significant portion of the midbrain and cerebellum. Thus, the requirement for Wnt signaling in forming the MHB constriction is evolutionarily conserved in vertebrates and it is possible in zebrafish to dissect the relative impact of multiple Wnt loci in midbrain and hindbrain development.  相似文献   

2.
The mechanisms by which the vertebrate brain develops its characteristic three-dimensional structure are poorly understood. The brain ventricles are a highly conserved system of cavities that form very early during brain morphogenesis and that are required for normal brain function. We have initiated a study of zebrafish brain ventricle development and show here that the neural tube expands into primary forebrain, midbrain and hindbrain ventricles rapidly, over a 4-hour window during mid-somitogenesis. Circulation is not required for initial ventricle formation, only for later expansion. Cell division rates in the neural tube surrounding the ventricles are higher than between ventricles and, consistently, cell division is required for normal ventricle development. Two zebrafish mutants that do not develop brain ventricles are snakehead and nagie oko. We show that snakehead is allelic to small heart, which has a mutation in the Na+K+ ATPase gene atp1a1a.1. The snakehead neural tube undergoes normal ventricle morphogenesis; however, the ventricles do not inflate, probably owing to impaired ion transport. By contrast, mutants in nagie oko, which was previously shown to encode a MAGUK family protein, fail to undergo ventricle morphogenesis. This correlates with an abnormal brain neuroepithelium, with no clear midline and disrupted junctional protein expression. This study defines three steps that are required for brain ventricle development and that occur independently of circulation: (1) morphogenesis of the neural tube, requiring nok function; (2) lumen inflation requiring atp1a1a.1 function; and (3) localized cell proliferation. We suggest that mechanisms of brain ventricle development are conserved throughout the vertebrates.  相似文献   

3.
In zebrafish acerebellar (ace) embryos, because of a point mutation in fgf8, the isthmic constriction containing the midbrain-hindbrain boundary (MHB) organizer fails to form. The mutants lack cerebellar development by morphological criteria, and they appear to have an enlarged tectum, showing no obvious reduction in the tissue mass at the dorsal mesencephalic/metencephalic alar plate. To reveal the molecular identity of the tissues located at equivalent rostrocaudal positions along the neuraxis as the isthmic and cerebellar primordia in wild-types, we undertook a detailed analysis of ace embryos. In ace mutants, the appearance of forebrain and midbrain specific marker genes (otx2, dmbx1, wnt4) in the caudal tectal enlargement reveals a marked rostralized gene expression profile during early somitogenesis, followed by the lack of early and late cerebellar-specific gene expression (zath1/atoh1, gap43, tag1/cntn2, neurod, zebrin II). The Locus coeruleus (LC) derived from rostral rhombomere 1 is also absent in the mutants. A new interface between otx2 and epha4a suggests that the rostralization stops at the caudal part of rhombomere 1. The mesencephalic basal plate is also affected in the mutant embryos, as indicated by the caudal expansion of the diencephalic expression domains of epha4a, zash1b/ashb, gap43 and tag1/cntn2, and by the dramatic reduction of twhh expression. No marked differences are seen in cell proliferation and apoptotic patterns around the time the rostralization of gene expression becomes evident in the mutants. Therefore, locally distinct cell proliferation and cell death is unlikely to be the cause of the fate alteration of the isthmic and cerebellar primordia in the mutants. Dil cell-lineage labeling of isthmic primordial cells reveals that cells, at the location equivalent of the wild-type MHB, give rise to caudal tectum in ace embryos. This suggests that a caudalto-rostral transformation leads to the tectal expansion in the mutants. Fgf8-coated beads are able to rescue morphological MHB formation, and elicit the normal molecular identity of the isthmic and cerebellar primordium in ace embryos. Taken together, our analysis reveals that cells of the isthmic and cerebellar primordia acquire a more rostral, tectal identity in the absence of the functional MHB organizer signal Fgf8.  相似文献   

4.
The vertebrate fin fold, the presumptive evolutionary antecedent of the paired fins, consists of two layers of epidermal cells extending dorsally and ventrally over the trunk and tail of the embryo, facilitating swimming during the embryonic and larval stages. Development of the fin fold requires dramatic changes in cell shape and adhesion during early development, but the proteins involved in this process are completely unknown. In a screen of mutants defective in fin fold morphogenesis, we identified a mutant with a severe fin fold defect, which also displays malformed pectoral fins. We find that the cause of the defect is a non-sense mutation in the zebrafish lama5 gene that truncates laminin α5 before the C-terminal laminin LG domains, thereby preventing laminin α5 from interacting with its cell surface receptors. Laminin is mislocalized in this mutant, as are the membrane-associated proteins, actin and β-catenin, that normally form foci within the fin fold. Ultrastructural analysis revealed severe morphological abnormalities and defects in cell-cell adhesion within the epidermis of the developing fin fold at 36 hpf, resulting in an epidermal sheet that can not extend away from the body. Examining the pectoral fins, we find that the lama5 mutant is the first zebrafish mutant identified in which the pectoral fins fail to make the transition from an apical epidermal ridge to an apical fold, a transformation that is essential for pectoral fin morphogenesis. We propose that laminin α5, which is concentrated at the distal ends of the fins, organizes the distal cells of the fin fold and pectoral fins in order to promote the morphogenesis of the epidermis. The lama5 mutant provides novel insight into the role of laminins in the zebrafish epidermis, and the molecular mechanisms driving fin formation in vertebrates.  相似文献   

5.
Primary mesenchyme formation in sea urchin embryos occurs when a subset of epithelial cells of the blastula move from the epithelial layer into the blastocoel. The role of microfilaments in producing the cell shape changes that characterize this process, referred to as ingression, was investigated in this study. f-Actin was localized by confocal microscopy using labeled phalloidin. The distribution of f-actin was observed before, during, and after ingression and was correlated with cellular movements. Prior to the onset of ingression, staining became intense in the apical region of putative primary mesenchyme and disappeared following the completion of mesenchyme formation. The apical end of these cells constricted coincidentally with the appearance of the intensified staining, indicating that f-actin may be involved in this constriction. In addition, papaverine, a smooth muscle cell relaxant that interferes with microfilament-based contraction, and that was shown in this study to inhibit cytokinesis, diminished apical constriction and delayed ingression. Despite this interference with apical constriction, the basal surface of ingressing cells protruded into the blastocoel. It is suggested that apical constriction, while not necessary for ingression, does contribute to the efficient production of mesenchyme and that protrusion of the basal surface results from changes that occur independent of apical constriction.  相似文献   

6.
The brain ventricular system is conserved among vertebrates and is composed of a series of interconnected cavities called brain ventricles, which form during the earliest stages of brain development and are maintained throughout the animal''s life. The brain ventricular system is found in vertebrates, and the ventricles develop after neural tube formation, when the central lumen fills with cerebrospinal fluid (CSF) 1,2. CSF is a protein rich fluid that is essential for normal brain development and function3-6.In zebrafish, brain ventricle inflation begins at approximately 18 hr post fertilization (hpf), after the neural tube is closed. Multiple processes are associated with brain ventricle formation, including formation of a neuroepithelium, tight junction formation that regulates permeability and CSF production. We showed that the Na,K-ATPase is required for brain ventricle inflation, impacting all these processes 7,8, while claudin 5a is necessary for tight junction formation 9. Additionally, we showed that "relaxation" of the embryonic neuroepithelium, via inhibition of myosin, is associated with brain ventricle inflation.To investigate the regulation of permeability during zebrafish brain ventricle inflation, we developed a ventricular dye retention assay. This method uses brain ventricle injection in a living zebrafish embryo, a technique previously developed in our lab10, to fluorescently label the cerebrospinal fluid. Embryos are then imaged over time as the fluorescent dye moves through the brain ventricles and neuroepithelium. The distance the dye front moves away from the basal (non-luminal) side of the neuroepithelium over time is quantified and is a measure of neuroepithelial permeability (Figure 1). We observe that dyes 70 kDa and smaller will move through the neuroepithelium and can be detected outside the embryonic zebrafish brain at 24 hpf (Figure 2).This dye retention assay can be used to analyze neuroepithelial permeability in a variety of different genetic backgrounds, at different times during development, and after environmental perturbations. It may also be useful in examining pathological accumulation of CSF. Overall, this technique allows investigators to analyze the role and regulation of permeability during development and disease.  相似文献   

7.
Members of the fibroblast growth factor (Fgf) family are important signaling molecules in several inductive and patterning processes, and act as brain organizer-derived signals during formation of the early vertebrate nervous system. We isolated a new member of the Fgf8/17/18 subgroup of Fgfs from the zebrafish, and studied its expression and function during somitogenesis, optic stalk and midbrain-hindbrain boundary (MHB) development. In spite of a slightly higher aminoacid similarity to Fgf8, expression analysis and mapping to a chromosome stretch that is syntenic with mammalian chromosomes shows that this gene is orthologous to mammalian Fgf17. These data provide a further example of conserved chromosomal organization between zebrafish and mammalian genomes. Using an mRNA injection assay, we show that fgf17 can act similar to fgf8 during gastrulation, when fgf17 is not normally expressed. Direct comparison of the expression patterns of fgf17 and fgf8 suggest however a possible cooperation of these Fgfs at later stages in several tissues requiring Fgf signaling. Analysis of zebrafish MHB mutants demonstrates a gene-dosage dependent requirement of fgf17 expression for the no isthmus// pax2.1 gene, showing that no isthmus/pax2.1 functions upstream of fgf17 at the MHB in a haplo-insufficient manner, similar to what has been reported for mammalian pax2 mutants. In contrast, only maintenance of fgf17 expression is disturbed at the MHB of acerebellar/fgf8 mutants. Consistent with a requirement for fgf8 function, implantation of FGF8-soaked beads induces fgf17 expression, and expression is upregulated in aussicht mutants, which display upregulation of the Fgf8 signaling pathway. Taken together, our results argue that Fgf8 and Fgf17 act as hierarchically organized signaling molecules during development of the MHB organizer and possibly other organizers in the developing nervous system.  相似文献   

8.
9.
After induction, the inner ear is transformed from a superficially located otic placode into an epithelial vesicle embedded in the mesenchyme of the head. Invagination of this epithelium is biphasic: phase 1 involves the expansion of the basal aspect of the otic cells, and phase 2, the constriction of their apices. Apical constriction is important not only for otic invagination, but also the invagination of many other epithelia; however, its molecular basis is still poorly understood. Here we show that phase 2 otic morphogenesis, like phase 1 morphogenesis, results from the activation of myosin-II. However unlike the actin depolymerising activity observed basally, active myosin-II results in actomyosin contractility. Myosin-II activation is triggered by the accumulation of the planar cell polarity (PCP) core protein, Celsr1 in apical junctions (AJ). Apically polarized Celsr1 orients and recruits the Rho Guanine exchange factor (GEF) ArhGEF11 to apical junctions, thus restricting RhoA activity to the junctional membrane where it activates the Rho kinase ROCK. We suggest that myosin-II and RhoA activation results in actomyosin dependent constriction in an apically polarised manner driving otic epithelium invagination.  相似文献   

10.
11.
Many morphogenetic movements during development require the formation of transient intermediates called rosettes. Within rosettes, cells are polarized with apical ends constricted towards the rosette center and nuclei basally displaced. Whereas the polarity and cytoskeletal machinery establishing these structures has been extensively studied, the extracellular cues and intracellular signaling cascades that promote their formation are not well understood. We examined how extracellular Fibroblast growth factor (Fgf) signals regulate rosette formation in the zebrafish posterior lateral line primordium (pLLp), a group of ~100 cells that migrates along the trunk during embryonic development to form the lateral line mechanosensory system. During migration, the pLLp deposits rosettes from the trailing edge, while cells are polarized and incorporated into nascent rosettes in the leading region. Fgf signaling was previously shown to be crucial for rosette formation in the pLLp. We demonstrate that activation of Fgf receptor (Fgfr) induces intracellular Ras-MAPK, which is required for apical constriction and rosette formation in the pLLp. Inhibiting Fgfr-Ras-MAPK leads to loss of apically localized Rho-associated kinase (Rock) 2a, which results in failed actomyosin cytoskeleton activation. Using mosaic analyses, we show that a cell-autonomous Ras-MAPK signal is required for apical constriction and Rock2a localization. We propose a model whereby activated Fgfr signals through Ras-MAPK to induce apical localization of Rock2a in a cell-autonomous manner, activating the actomyosin network to promote apical constriction and rosette formation in the pLLp. This mechanism presents a novel cellular strategy for driving cell shape changes.  相似文献   

12.
Cell shape changes are critical for morphogenetic events such as gastrulation, neurulation, and organogenesis. However, the cell biology driving cell shape changes is poorly understood, especially in vertebrates. The beginning of Xenopus laevis gastrulation is marked by the apical constriction of bottle cells in the dorsal marginal zone, which bends the tissue and creates a crevice at the blastopore lip. We found that bottle cells contribute significantly to gastrulation, as their shape change can generate the force required for initial blastopore formation. As actin and myosin are often implicated in contraction, we examined their localization and function in bottle cells. F-actin and activated myosin accumulate apically in bottle cells, and actin and myosin inhibitors either prevent or severely perturb bottle cell formation, showing that actomyosin contractility is required for apical constriction. Microtubules were localized in apicobasally directed arrays in bottle cells, emanating from the apical surface. Surprisingly, apical constriction was inhibited in the presence of nocodazole but not taxol, suggesting that intact, but not dynamic, microtubules are required for apical constriction. Our results indicate that actomyosin contractility is required for bottle cell morphogenesis and further suggest a novel and unpredicted role for microtubules during apical constriction.  相似文献   

13.
《Biophysical journal》2021,120(19):4202-4213
Epithelial folding is a fundamental morphogenetic process that shapes planar epithelial sheets into complex three-dimensional structures. Multiple mechanisms can generate epithelial folds, including apical constriction, which acts locally at the cellular level, differential growth on the tissue scale, or buckling because of compression from neighboring tissues. Here, we investigate the formation of dorsally located epithelial folds at segment boundaries during the late stages of Drosophila embryogenesis. We found that the fold formation at the segment boundaries occurs through the juxtaposition of two key morphogenetic processes: local apical constriction and tissue-level compressive forces from posterior segments. Further, we found that epidermal spreading and fold formation are accompanied by spatiotemporal pulses of Hedgehog (Hh) signaling. A computational model that incorporates the local forces generated from the differential tensions of the apical, basal, and lateral sides of the cell and active forces generated within the whole tissue recapitulates the overall fold formation process in wild-type and Hh overexpression conditions. In sum, this work demonstrates how epithelial folding depends on multiple, separable physical mechanisms to generate the final morphology of the dorsal epidermis. This work illustrates the modularity of morphogenetic unit operations that occur during epithelial morphogenesis.  相似文献   

14.
15.
Apical-domain constriction is important for regulating epithelial morphogenesis. Epithelial cells are connected by apical junctional complexes (AJCs) that are lined with circumferential actomyosin cables. The contractility of these cables is regulated by Rho-associated kinases (ROCKs). Here, we report that Willin (a FERM-domain protein) and Par3 (a polarity-regulating protein) cooperatively regulate ROCK-dependent apical constriction. We found that Willin recruits aPKC and Par6 to the AJCs, independently of Par3. Simultaneous depletion of Willin and Par3 completely removed aPKC and Par6 from the AJCs and induced apical constriction. Induced constriction was through upregulation of the level of AJC-associated ROCKs, which was due to loss of aPKC. Our results indicate that aPKC phosphorylates ROCK and suppresses its junctional localization, thereby allowing cells to retain normally shaped apical domains. Thus, we have uncovered a Willin/Par3-aPKC-ROCK pathway that controls epithelial apical morphology.  相似文献   

16.
Del Bene F  Wehman AM  Link BA  Baier H 《Cell》2008,134(6):1055-1065
The different cell types in the central nervous system develop from a common pool of progenitor cells. The nuclei of progenitors move between the apical and basal surfaces of the neuroepithelium in phase with their cell cycle, a process termed interkinetic nuclear migration (INM). In the retina of zebrafish mikre oko (mok) mutants, in which the motor protein Dynactin-1 is disrupted, interkinetic nuclei migrate more rapidly and deeply to the basal side and more slowly to the apical side. We found that Notch signaling is predominantly activated on the apical side in both mutants and wild-type. Mutant progenitors are, thus, less exposed to Notch and exit the cell cycle prematurely. This leads to an overproduction of early-born retinal ganglion cells (RGCs) at the expense of later-born interneurons and glia. Our data indicate that the function of INM is to balance the exposure of progenitor nuclei to neurogenic versus proliferative signals.  相似文献   

17.
18.
Vertebrate mechanosensory hair cells contain a narrow "pericuticular" zone which is densely populated with small vesicles between the cuticular plate and cellular junctions near the apical surface. The presence of many cytoplasmic vesicles suggests that the apical surface of hair cells has a high turnover rate. The significance of intense membrane trafficking at the apical surface is not known. Using a marker of endocytosis, the styryl dye FM1-43, this report shows that rapid apical endocytosis in zebrafish lateral line sensory hair cells is calcium and calmodulin dependent and is partially blocked by the presence of amiloride and dihydrostreptomycin, known inhibitors of mechanotransduction channels. As seen in lateral line hair cells, sensory hair cells within the larval otic capsule also exhibit rapid apical endocytosis. Defects in internalization of the dye in both lateral line and inner ear hair cells were found in five zebrafish auditory/vestibular mutants: sputnik, mariner, orbiter, mercury, and skylab. In addition, lateral line hair cells in these mutants were not sensitive to prolonged exposure to streptomycin, which is toxic to hair cells. The presence of endocytic defects in the majority of zebrafish mechanosensory mutants points to a important role of apical endocytosis in hair cell function.  相似文献   

19.

Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  相似文献   

20.
Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase activity. Here we investigate apical constriction during chick lens placode invagination. Inhibition of actin polymerization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify if lens placode invaginate through apical constriction, we analyzed the role of Rho-ROCK pathway. Rho GTPases expression at the apical portion of the lens placode occurs with the same dynamics as that of the cytoskeleton. Overexpression of the pan-Rho inhibitor C3 exotoxin abolished invagination and had a strong effect on apical myosin II enrichment and a mild effect on apical actin localization. In contrast, pharmacological inhibition of ROCK activity interfered significantly with apical enrichment of both actin and myosin. These results suggest that apical constriction in lens invagination involves ROCK but apical concentration of actin and myosin are regulated through different pathways upstream of ROCK. genesis 49:368-379, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号