首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Interactions of the nuclear thyroid hormone receptor with core histones   总被引:1,自引:0,他引:1  
These studies concern the interactions of the rat liver thyroid hormone nuclear receptor with histones and factors influencing the receptor's assay and stability. Heating certain crude receptor preparations at 50 degrees C produces a selective loss of triiodothyronine (T3) but not thyroxine (T4) binding activity, whereas, with more purified preparations, such heating decreases both T3 and T4 binding. The selective T3-binding loss in crude preparations was found to be due to the simultaneous denaturation of the receptor's high-affinity hormone-binding activity for both T3 and T4 and generation of new low-affinity T4-binding sites. The fraction in which T4 binding can be activated could be separated from the receptors by Sephadex G-100 chromatography. Core histones stimulated both T3- and T4-binding activity of 6-fold-purified receptor preparations, and data from several different experimental approaches suggest that this stimulation is due to the capability of the core histones to prevent the receptor from binding to or being denatured by Sephadex G-25 assay columns. The core histones were also found to stabilize 500-fold-purified but not 6-fold-purified or crude receptor preparations. A number of other acidic or basic proteins had little or none of these stimulatory effects, whereas a few proteins (such as the insulin B chain and histone H1) did have activity, although it was less than that of the core histones. There were no significant differences between the purified core histone subfractions (H2A, H2B, H3, and H4). That core histones can interact with the thyroid hormone receptors was demonstrated more directly by the finding that the receptors bind to histone-Sepharose but not Sepharose or insulin- or ovalbumin-Sepharose columns and that this binding was blocked by core histones at concentrations suggestive of an affinity for the receptor-core histone interaction of around 3 microM at 0.15 M salt concentration. The results demonstrate the utility of the histones in the assay and stabilization of purified thyroid hormone receptors, but they fail to support our previous hypothesis of a receptor subunit where T3- but not T4-binding activity is regulated selectively by histones. However, the results indicate that histones may interact with the receptors with some degree of specificity, and they raise the possibility that the histones participate in the nuclear localization of the receptors.  相似文献   

3.
4.
Unesterified long-chain fatty acids strongly inhibited thyroid hormone (T3) binding to nuclear receptors extracted from rat liver, kidney, spleen, brain, testis and heart. Oleic acid was the most potent inhibitor, attaining 50% inhibition at 2.8 microM. Oleic acid similarly inhibited the partially purified receptor and enhanced dissociation of the preformed T3-receptor complex. The fatty acid acted in a soluble form and in a competitive manner for the T3-binding sites, thereby reducing the affinity of the receptor for T3. The affinity of the receptor for oleic acid (Ki) was 1.0 microM. In HTC rat hepatoma cells in culture, fatty acids added to the medium reached the nucleus and inhibited nuclear T3 binding; oleic acid being the most potent. T3 binding of the cells was reversibly restored in fresh medium free of added fatty acids. Oleic acid did not affect all the T3-binding sites in the HTC cells: one form (80%) was inhibited and the other was not and these two forms were commonly present in all rat tissues examined. Thus, fatty acids inhibited the solubilized nuclear receptor as well as a class of nuclear T3-binding sites in cells in culture.  相似文献   

5.
It has been proposed that the unliganded nontransformed form of steroid hormone receptor is a heterooligomer comprising, in addition to the hormone-binding subunit, two associated proteins: a heat shock protein of MW 90,000 (hsp90) and another protein of MW 59,000 (p59). Using monoclonal antibodies, we demonstrate immunocytochemically the presence of both hsp90 and p59 in cell nuclei of progesterone target cells of the rabbit uterus. While steroid receptors (e.g., progesterone receptors) appear to be exclusively nuclear, we find p59 predominantly in the cell nuclei and hsp90 in both the nucleus and the cytoplasm. In addition, Western blotting of high-salt extracts of nuclear proteins detects the presence of hsp90 and p59 in the nuclei of rabbit uterus. These observations are consistent with the presence of the untransformed heterooligomeric form of steroid hormone receptors in the nuclei of target cells.  相似文献   

6.
Monoclonal antibodies were raised against the nuclear thyroid hormone receptors encoded by c-ERB A genes and against a purified nuclear receptor fraction. These antibodies recognize the c-ERB A protein in nuclear extracts from rat liver and are able to compete with thyroid hormone in Scatchard analyses. In sections of rat liver they react with all the hepatocyte nuclei as well as with the cells of the hepatic bile ducts. Comparison with another putative T3 receptor antibody, described previously, showed that distinct 57 kD proteins with a different cellular distribution were recognized.  相似文献   

7.
B Dozin  H J Cahnmann  V M Nikodem 《Biochemistry》1985,24(19):5197-5202
Photoaffinity labeling of rat liver nuclear extract with underivatized thyroid hormones was performed after incubation with 1 nM [3',5'-125I]thyroxine ([125I]T4) or [3'-125I]triiodothyronine [( 125I]T3) by irradiation with light above 300 nm. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the covalently photolabeled nuclear extract revealed four distinct hormone binding proteins of molecular masses 96, 56, 45, and 35 kilodaltons (kDa), respectively. Distribution of the hormone among these proteins was similar for T4 and T3. The 56- and 45-kDa proteins were the most prominently labeled. The specificity of the photoattachment of thyroid hormones to these nuclear proteins was verified by the irradiation of eight randomly chosen proteins and two proteins known to have thyroid hormone binding sites, human thyroxine binding globulin and bovine serum albumin. Only the latter two were photolabeled with [125I]T4. Competition studies performed by incubating nuclear extracts with [125I]T4 or [125I]T3 in the presence of increasing amounts of the corresponding unlabeled hormone (10-, 100-, and 1000-fold molar excess) demonstrated that (1) photoattachment of labeled T3 or T4 to the 56- and 45-kDa proteins was inhibited by 67-78% and 73-85%, respectively, after incubation with a 1000-fold molar excess of unlabeled hormone, (2) in the presence of lower molar excesses of the corresponding competitor (10- and 100-fold), photoattachment of labeled T3 or T4 to the 56- and 45-kDa receptors was gradually inhibited to a similar extent on both proteins, and (3) the 35- and 96-kDa proteins, although having thyroid hormone binding sites, display lower binding activities since the inhibition of photoattachment of labeled T3 or T4 by a 1000-fold molar excess of unlabeled hormone did not exceed 30-42% and 26-49%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Long-chain fatty acids and their acyl-CoA esters are potent inhibitors of nuclear thyroid hormone (T3) receptor in vitro. In the present study, we obtained evidence for acyl-CoA binding activity in the nuclear extract from rat liver. The activity sedimented at a position (3.5 S) identical with that of the T3 receptor, and the two activities sedimented together. Similarly, they coeluted on DEAE-Sephadex. After partial purification of the receptor, it was again inhibited strongly by acyl-CoAs. Heat stability and a partial trypsin digestion of the receptor both suggested that the action site of oleoyl-CoA overlapped the T3-binding domain of the receptor. In addition, thyroid hormone receptor β1, synthesized in vitro, bound oleoyl-CoA specifically and its T3-binding activity was inhibited. The dissociation constant for oleoyl-CoA binding to the partially purified receptor was 1.2 × 10?7 M. This value as well as its molecular size distinguished the nuclear binding sites from the cytoplasmic fatty acid/acyl-CoA binding proteins. Oleoyl-CoA had no effect on the glucocorticoid receptor, another member of the nuclear hormone-receptor superfamily. From these results, we propose that thyroid hormone receptor is a specific acyl-CoA binding protein of the cell nucleus.  相似文献   

9.
Cellular binding proteins of thyroid hormones   总被引:1,自引:0,他引:1  
K Ichikawa  K Hashizume 《Life sciences》1991,49(21):1513-1522
  相似文献   

10.
Recent studies from this laboratory have demonstrated the presence of thyroid hormone response elements (TREs) in the 5'-flanking region of the rat alpha and TSH beta subunit genes. Using an avidin-biotin complex DNA binding assay, we have shown that these TREs bind the thyroid hormone (T3) receptor present in nuclear extracts of GH3 cells, as well as the in vitro synthesized Hc-erbA beta, which has been identified as a member of the family of T3 receptors. The binding of Hc-erbA beta to the alpha subunit TRE can be enhanced 3-4-fold by including GH3 nuclear extract in the binding assay. Binding to the TRE present in the TSH beta gene or the rat growth hormone gene was similarly enhanced, although to a lesser degree. The enhanced binding activity is trypsin-sensitive and heat labile, and is not reproduced by the addition of histones, bovine serum albumin, or cytosol instead of nuclear extract. Gel exclusion chromatography suggests a molecular size of approximately 65,000 Da. This protein, which is present in several different cell types, is also able to complement binding of the rat erbA alpha-1 and the pituitary-specific erbA beta-2 forms of the receptor. These data suggest that the binding of the T3 receptor to a TRE is augmented by another nuclear protein, which may be involved in the mechanism of action of thyroid hormone.  相似文献   

11.
Unliganded glucocorticoid receptors (GRs) released from chromatin after hormone withdrawal remain associated with the nucleus within a novel subnuclear compartment that serves as a nuclear export staging area. We set out to examine whether unliganded nuclear receptors cycle between distinct subnuclear compartments or require cytoplasmic transit to regain hormone and chromatin-binding capacity. Hormone-withdrawn rat GrH2 hepatoma cells were permeabilized with digitonin to deplete cytoplasmic factors, and then hormone-binding and chromatin-binding properties of the recycled nuclear GRs were measured. We found that recycled nuclear GRs do not require cytosolic factors or ATP to rebind hormone. Nuclear GRs that rebind hormone in permeabilized cells target to high-affinity chromatin-binding sites at 30 C, but not 0 C, in the presence of ATP. Since geldanamycin, a heat shock protein-90 (hsp90)-binding drug, inhibits hormone binding to recycled nuclear GRs, hsp90 may be required to reassemble the receptor into a form capable of productive interactions with hormone. Geldanamycin also inhibits GR release from chromatin during hormone withdrawal, suggesting that hsp90 chaperone function may play multiple roles to facilitate chromatin recycling of GR.  相似文献   

12.
Nuclear binding sites of T3 in human trophoblastic cells were biochemically characterized. Nuclei were isolated by a combination procedure with mild homogenization of the freshly obtained trophoblastic tissue aged term gestation, centrifugations and Triton X-100 treatment. The isolated nuclei were incubated with various concentrations of 125I-T3 at 20 degrees C for 3 h. The total number of T3 binding sites per nucleus was approximately 650. The apparent association constant (Ka) was 6.0 X 10(9)M-1. Nuclear proteins extracted from purified nuclei with 0.4M KCl were able to bind T3 giving rise to nuclear thyroid hormone binding protein-T3 complexes and they were precipitated with bovine IgG, as a carrier protein, by 12.5% polyethylene glycol. Binding was maximum in 3 h incubation at 20 degrees C or in 18 h at 0 degrees C, while it dropped quickly at 37 degrees C. The binding characteristics were analyzed by Scatchard plots. In nuclear proteins obtained from 8 term placentae there was a single set of high affinity-low capacity T3 binding sites with Ka of 7.0 X 10(9)M-1. The capacity is about 62.7 fmol T3/mg DNA. The binding sites were found to be specific for L-T3, while L-T4 was about 100-fold less effective, rT3 ineffective, and D-T3 and D-T4 were roughly 1/8 and 1/5 as active as L-T3 and L-T4, respectively in displacing 125I-T3 from the binding sites. These data confirmed that human placenta is a target organ of thyroid hormones; trophoblastic cells contain T3 nuclear receptors which are biochemically similar to those isolated from liver, although the capacity is low.  相似文献   

13.
14.
A study was made of the role played by specific iodinethyrodine-binding proteins of rat hepatocytes in the process of nucleo-cytoplasmic interrelations of the thyroid hormones under normal conditions in thyroidectomy and in experimental thyrotoxicosis. The concentration of the hormone-binding sites in the cell depended on the thyroid hormone level outside the cell. An important role of the cytosol hormone-binding proteins in the accumulation and interacellular distribution of the thyroid cell hormones is emphasized. The absence of any participation of cytosol triiodine-thyronine binding proteins in the process ofpenetration of the hormone into the nucleus was revealed. Triiodine-thyronine level in the nuclei depended directly on the concentration of the recptor proteins in them and the degree of occupation of the acceptor sites in the receptors proper.  相似文献   

15.
We report that a monoclonal antibody directed against phosphorylated neurofilaments (SMI 31) recognizes nuclear antigens present in embryonic but not in adult neural cells. On Western blots, the antibody reacts with four proteins of apparent MW 35, 37, 52/54, and 250 KD which are found exclusively in developing brain tissue. These nuclear antigens are expressed by glial and neuronal cells. Both nuclear staining and immunoreactive proteins decrease with ongoing in vitro differentiation. A computer search for proteins that share the epitope recognized by antibody SMI 31 did not yield any proteins of known nuclear localization that exhibit the same molecular weights and solubility characteristics as the above immunoreactive proteins. We conclude that antibody SMI 31 recognizes hitherto unknown nuclear proteins which, in neural cells, are developmentally regulated.  相似文献   

16.
Rat liver nuclear thyroid hormone receptor was subjected to limited trypsin digestion, and the tryptic fragment of the 3,5,3'-triiodo-L-thyronine (T3)-receptor complex was characterized. Rat liver nuclear thyroid hormone receptor is an asymmetrical protein with Stokes radius of 34 A, sedimentation coefficient of 3.4 S, and molecular weight of 49,000. A globular T3-receptor complex with Stokes radius of 22 A, sedimentation coefficient of 2.8 S, and molecular weight of 26,000 was obtained by tryptic digestion. This fragment had no DNA binding activity, whereas undigested receptor showed significant DNA binding activity. Addition of undigested receptor to the tryptic fragment did not restore DNA binding activity of digested receptor, nor did mixing inhibit DNA binding activity of undigested receptor complex. Undigested receptor bound to core histones, and this activity was stronger than with other proteins tested (H1 histone, cytochrome c, and ovalbumin). The tryptic fragment of receptor maintained core histone binding activity comparable to that of undigested receptor. The tryptic fragment had affinity for T3 comparable to undigested receptor as assessed by Scatchard analysis and the same rate for dissociation of [125I]T3 from receptor. The tryptic fragment of the T3-receptor complex was more stable than undigested receptor at 43 degrees C. Digestion of receptor unoccupied by T3 caused a significantly larger loss of T3 binding capacity than did digestion of T3-occupied receptor, suggesting a protective effect of T3 on a second trypsin-sensitive site on the receptor, which, when cut, destroys T3 binding activity.  相似文献   

17.
Thyroxine(T4)-binding to serum proteins in primates; catarrhini, prosimiae, and platyrrhini were studied by polyacrylamide gel electrophoresis T4 binding analysis. From the electrophoretic analysis, it was shown that thyroxine-binding proteins similar to human thyroxine-binding globulin (TBG) and thyroxine-binding prealbumin (TBPA) were present in catarrhini and prosimiae species, but not in platyrrhini (callithricidae and cebidae). T4-binding analysis also revealed that catarrhini and prosimiae have a high affinity T4-binding protein similar to human TBG. The association constant (Ka) for T4 of the plasma proteins in these species was approximately 2.0 X 10(10) M-1. On the other hand, it was unable to demonstrate a high affinity binding site for T4 in the plasma of platyrrhini species. Both the total and free thyroid hormone concentrations in catarrhini and prosimiae were similar to those in human. Total T4 in cebidae, one of the platyrrhini species, was extremely low. Among 8 animals examined, T4 in 6 was undetectable by radioimmunoassay and the mean T4 of the other two was 2.8 micrograms/dl. However, free thyroid hormone concentrations were similar to those in human. In callithricidae, another platyrrhini species, T4 in plasma was 6.90 +/- 2.11, which is comparable to the level in normal human subjects. However, in this species, high-affinity T4-binding protein was lacking and free thyroid hormone concentrations were extremely high (most were higher than the assay limit). Although the thyroid function of callithricidae remains to be studied, it will be interesting if callithricidae is resistant to thyroid hormone action.  相似文献   

18.
J Short  P Ove 《Cytobios》1983,38(149):39-49
This review summarizes the accumulating evidence supporting a conspicuous role for the thyroid hormones and/or hepatic levels of nuclear T3-binding sites in hepatocytes proliferation in vivo. The hepatic nuclear binding sites for the iodothyronines were first described in 1972. Comparing a number of observations made on the hepatic levels of these nuclear T3-binding sites with models of liver cell proliferation, a striking relationship is now beginning to emerge. It seems that in many hepatomitogenic systems the levels of these nuclear binding sites become markedly reduced preceding the onset of enhanced DNA replication and mitosis. The hepatomitogenic systems described which do not involve a lowering in the levels of these nuclear binding sites appear to be predicated on raising the circulating levels of the thyroid hormones per se. How these two seemingly anomalous events can both produce the same proliferative effect on liver cells is not entirely clear. Equally vague as yet are the discrete genetic consequences of these proliferative initiators which lead to hepatocyte hyperplasia. There is some evidence that this proliferative controlling effect on the thyroid hormones on hepatocytes may also extent, in part, to hepatoma cells.  相似文献   

19.
We have examined the binding of nuclear proteins and recombinant thyroid hormone receptors (TRs) to the palindromic thyroid hormone responsive element AGGTCATGACCT (TREp) using a gel electrophoretic mobility shift assay. Four specific protein-DNA complexes were detected after incubation of nuclear extracts (NE) from T3-responsive pituitary (GH3) cells with a TREp-containing DNA fragment. This was compared with the TREp binding of reticulocyte lysate-synthesized TRs. TR alpha 1 and TR beta 2 each formed a single major TR:TREp complex which comigrated with the least retarded complex formed by GH3 NE, while TR beta 1 formed multiple complexes suggesting that it can bind to TREp as an oligomer. Interestingly, coincubation of 35S-TR alpha 1, GH3 NE, and unlabeled TREp resulted in not only the 35S-TR:TREp complex, but in two additional more greatly retarded complexes containing 35S-TR alpha 1 and comigrating with those formed by GH3 extract alone. Incubation of each of the TRs with NE from COS-7 cells, which do not possess sufficient endogenous TRs to mediate T3-responses, resulted in formation of a new, more greatly shifted complex. A similar, heat labile activity which altered mobility of the TR:TRE complex was also present in NE from T3-unresponsive JEG-3 cells. At high concentration of NE, all of the TR bound to TREp was more greatly retarded than in the absence of NE. Truncation of TR alpha 1 at amino acid 210 prevented additional complex formation in the presence of NE without affecting DNA binding, suggesting that the carboxyl-terminus of the TRs is essential for interaction with nuclear proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号