首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1989,109(6):3187-3198
Reichert's membrane, an extraembryonic membrane present in developing rodents, has been proposed as an in vivo model for the study of basement membranes. We have used this membrane as a source for isolation of basement membrane proteoglycans. Reichert's membranes were extracted in a guanidine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate buffer followed by cesium chloride density-gradient ultracentrifugation under dissociative conditions. The proteoglycans were subsequently purified from the two most dense fractions (greater than 1.3 g/ml) by ion-exchange chromatography. Mice were immunized with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were purified from both supernatant and tissue fractions of Reichert's membranes incubated in short-term organ culture in the presence of radiolabel. The resultant affinity-purified proteoglycan samples were examined by gel filtration, SDS-PAGE, and immunoblotting. This proteoglycan is of high molecular weight (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core protein were also recognized by all four mAbs. Indirect immunofluorescence of rat tissue sections stained with these antibodies reveal a widespread distribution of this proteoglycan, localized specifically to Reichert's membrane and nearly all basement membranes of rat tissues. In addition to heparan sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component.  相似文献   

2.
Proteoglycans were extracted from 14-day chick embryo brains, which had been labelled in vitro with [35S]sulfate or 3H-labelled amino acids. 4.0 M guanidinium chloride (containing proteinase inhibitors) extracted 94% of the 35S-labelled glycoconjugates. Following cesium chloride equilibrium centrifugation, the proteoglycans in each fraction were characterized by chromatography on Sepharose CL-2B. The most dense fraction (D1), which contained no detectable non-proteoglycan proteins, contained a large, aggregating chondroitin sulfate proteoglycan in addition to small chondroitin sulfate and heparan sulfate proteoglycans. The less dense fractions (D2-D6) contained both small chondroitin sulfate and heparan sulfate proteoglycans. Removal of hyaluronate from the D1 sample by digestion with Streptomyces hyaluronidase in the presence of proteinase inhibitors showed that aggregation of the large chondroitin sulfate proteoglycan is hyaluronate-dependent. Aggregation was restored by re-addition of hyaluronate. Reduction and alkylation, which blocked aggregation of a cartilage A1 proteoglycan, did not interfere with aggregation of the large brain proteoglycan.  相似文献   

3.
Proteoglycans, metabolically labelled with [3H]leucine and 35SO4(2-), were isolated from the spent media and from guanidinium chloride extracts of cultured human umbilical-vein endothelial cells by using isopycnic density-gradient centrifugation, gel filtration and ion-exchange h.p.l.c. The major proteoglycan species were subjected to SDS/polyacrylamide-gel electrophoresis before and after enzymic degradation of the polysaccharide chains. The cell extract contained mainly a heparan sulphate proteoglycan that has a buoyant density of 1.31 g/ml and a protein core with apparent molecular mass 300 kDa. The latter was heterogeneous and migrated as one major and one minor band. After reduction, the apparent molecular mass of the major band increased to approx. 350 kDa, indicating the presence of intrachain disulphide bonds. The proteoglycan binds to octyl-Sepharose and its polysaccharide chains are extensively degraded by heparan sulphate lyase. The proteoglycans of the medium contained 90% of all the incorporated 35SO4(2-). Here the predominant heparan sulphate proteoglycan was similar to that of the cell extract, but was more heterogeneous and contained an additional core protein with apparent molecular mass 210 kDa. Furthermore, two different chondroitin sulphate proteoglycans were found: one 200 kDa species with a high buoyant density (approx. 1.45 g/ml) and one 100 kDa species with low buoyant density (approx. 1.3 g/ml). Both these proteoglycans have a core protein of molecular mass approx. 47 kDa.  相似文献   

4.
Proteoglycans may be implicated in the process of aggregation of acetylcholine receptors in the basal lamina of skeletal muscle and possibly in the mechanism of reinnervation at the neuromuscular junction. In order to further deduce the role of such proteoglycans, we have sought to isolate them and define their molecular structures. In this study, proteoglycans were extracted from rabbit skeletal muscle by using 4 M guanidine hydrochloride and were purified by sequential cesium chloride density gradient ultracentrifugation, DEAE-cellulose ion-exchange chromatography, and Sepharose CL-6B and CL-2B gel filtration under dissociative conditions. A chondroitin sulfate proteoglycan which constituted about 44% of the total hexuronic acid content of the muscle tissue was isolated. This proteoglycan was found to have an apparent molecular weight [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)] of 95,000, consistent with its small hydrodynamic size (Kav = 0.8 on Sepharose CL-2B), and to consist of peptide and glycosaminoglycan in a weight ratio of 1.0/0.8. The average molecular weight of its core protein-oligosaccharide remnants is 50,000, as estimated by SDS-PAGE of the chondroitinase ABC digested proteoglycan. Alkaline NaB3H4 treatment of the intact proteoglycan released chondroitin sulfate chains with an average molecular weight of 21,000. Pronase digestion of the intact proteoglycan generated glycosaminoglycan-peptides with an average of two chondroitin sulfate chains per peptide. These two saccharide units account for the total glycosaminoglycans per molecule and appear to be closely spaced on the core protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A proteoglycan in which the glycosaminoglycans are predominantly chondroitin sulfate has been isolated from the soluble fraction of rat brain by ion exchange chromatography and gel filtration. Glycoprotein oligosaccharides are also present, and result in adsorption of the proteoglycan by Concanavalin A-Sepharose. The proteoglycan-glycoprotein complex eluted from the affinity column by alpha-methylglucoside floats near the top of a cesium chloride density gradient run under dissociative conditions (4 M guanidine), but after beta-elimination of the chondroitin sulfate polysaccharide chains from their low buoyant density glycoprotein complex they sediment to the bottom of the gradient. These results suggest that relatively few polysaccharide chains are covalently linked to a large protein core in the dissociated chondroitin sulfate proteoglycan "subunit" from brain, and that the proteoglycans are closely associated with soluble glycoproteins.  相似文献   

6.
The proteoglycans secreted by a malignant human breast cell line (MDA-MB-231) were compared with the corresponding proteoglycans from a normal human breast cell line (HBL-100). The physicochemical characteristics of these proteoglycans were established by hexosamine analysis, chemical and enzymatic degradations, and dissociative cesium chloride density gradient centrifugation, and by gel filtration before and after alkaline beta-elimination. Both cell lines secreted approximately 70% of the synthesized proteoglycans, which were composed of 20% heparan sulfate and 80% chondroitin sulfate proteoglycans. The MDA cell line secreted large hydrodynamic size (major) and small hydrodynamic size heparan sulfate proteoglycan. In contrast HBL cells secreted only one species having a hydrodynamic size intermediate to the above two. The chondroitin sulfate proteoglycans from MDA medium were slightly larger than the corresponding polymers from HBL medium. All proteoglycans except the small hydrodynamic size heparan sulfate proteoglycan from MDA medium were of high buoyant density. The proteoglycans of both cell lines contained significant proportions of disulfide-linked lower molecular weight components which were more pronounced in the proteoheparan sulfate polymers, particularly those from MDA medium, than in chondroitin sulfate proteoglycans. The glycosaminoglycans of heparan sulfate proteoglycans from MDA medium were more heterogeneous than those from HBL medium. The glycosaminoglycan chains of large hydrodynamic size heparan sulfate proteoglycans from MDA medium were larger in size than those from HBL medium while small hydrodynamic size heparan sulfate proteoglycans contained shorter glycosaminoglycan chains. In contrast to the glycosaminoglycans derived from chondroitin sulfate proteoglycans of both MDA and HBL medium were comparable in size. The heparan sulfate as well as chondroitin sulfate proteoglycans of both cell lines contained both neutral (di- and tetrasaccharides) and sialylated (tri- to hexasaccharides) O-linked oligosaccharides.  相似文献   

7.
Confluent cultured human lung fibroblasts were labeled with 35SO4(2-). After 48 h of labeling, the pericellular matrix was prepared by Triton X-100 and deoxycholate extraction of the monolayers. Heparan sulfate proteoglycan (HSPG) accounted for nearly 80% of the total matrix [35S]proteoglycans. After solubilization in 6 M guanidinium HCl and cesium chloride density gradient centrifugation, the majority (78%) of these [35S] HSPG equilibrated at an average buoyant density of 1.35 g/ml. This major HSPG fraction was purified by ion-exchange chromatography on Mono Q and by gel filtration on Sepharose CL-4B, and further characterized by gel electrophoresis and immunoblotting. Intact [35S]HSPG eluted with Kav 0.1 from Sepharose CL-4B, whereas the protein-free [35S]heparan sulfate chains, obtained by alkaline borohydride treatment of the proteoglycan fractions, eluted with Kav 0.45 (Mr approximately 72,000). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, core (protein) preparations, obtained by heparitinase digestion of 125I-labeled HSPG fractions, yielded one major labeled band with apparent molecular mass of approximately 300 kDa. Reduction with beta-mercaptoethanol slightly increased the apparent Mr of the labeled band, suggesting a single polypeptide structure and the presence of intrachain disulfide bonds. Immunoadsorption experiments and immunostaining of electrophoretically separated heparitinase-digested core proteins with monoclonal antibodies raised against matrix and cell surface-associated HSPG suggested that the major matrix-associated HSPG of cultured human lung fibroblasts is distinct from the HSPG that are anchored in the membranes of these cells. Binding studies suggested that this matrix HSPG interacts with several matrix components, both through its glycosaminoglycan chains and through its heparitinase-resistant core. Core (protein) interactions seem to be responsible for the association of the proteoglycan with the extracellular matrix.  相似文献   

8.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

9.
This study has examined changes in proteoglycan synthesis during megakaryocyte maturation in vivo. Guinea pigs were injected with Na235SO4, and megakaryocytes and platelets were isolated from 3 h to 5 days later. The proteoglycans and other sulfated molecules in both cells were characterized at each time point by gel filtration, ion-exchange chromatography, gel electrophoresis, and chemical and enzymatic digestions. Two populations of chondroitin 6-sulfate proteoglycans were found by DEAE-Sephacel chromatography. The major fraction was eluted with 4 M guanidine hydrochloride and the minor fraction with 4 M guanidine HCl, 2% Triton X-100. The Kav of the major proteoglycan peak in the platelets at 1 day after injection was 0.18-0.20 on Sepharose CL-6B and decreased gradually to 0.12 by 3 days, when proteoglycan radioactivity per cell was maximal. The peak for megakaryocyte proteoglycans at 3 h was broad, with Kav = 0.1-0.2. The appearance of different portions of the proteoglycan peak in platelets coincided with their disappearance from megakaryocytes. Proteoglycan size was a function of glycosaminoglycan chain length. The proteoglycans eluted with Triton X-100 from DEAE-Sephacel (Kav = 0.04-0.07 on Sepharose CL-6B) were not labeled in platelets until 2 days after injection. Our data suggest that megakaryocytes synthesize different-sized chondroitin sulfate proteoglycans at different stages of development. The proteoglycans of the major fraction were released from platelets in response to thrombin, and a small amount was released by ADP. The proteoglycans of the Triton X-100 eluate were not released by thrombin or ADP. About 20% of the sulfate radioactivity was incorporated into molecules that appear to be sulfated proteins and were not released by thrombin or ADP.  相似文献   

10.
35SO42(-)- and [3H]leucine-labelled proteoglycans were isolated from the medium and cell layer of human skin fibroblast cultures. Measures were taken to avoid proteolytic modifications during isolation by adding guanidinium chloride and proteolysis inhibitors immediately after harvest. The proteoglycans were purified and fractionated by density-gradient centrifugation, followed by gel and ion-exchange chromatography. Our procedure permitted the isolation of two major proteoglycan fractions from the medium, one large, containing glucuronic acid-rich dermatan sulphate chains, and one small, containing iduronic acid-rich ones. The protein core of the latter proteoglycan had an apparent molecular weight of 47000 as determined by polyacrylamide-gel electrophoresis, whereas the protein core of the former was considerably larger. The major dermatan sulphate proteoglycan of the cell layer was similar to the large proteoglycan of the medium. Only small amounts of the iduronic acid-rich dermatan sulphate proteoglycan could be isolated from the cell layer. Instead most of the iduronic acid-rich glycans appeared as free chains. The heparan sulphate proteoglycans found in the cell culture were largely confined to the cell layer. This proteoglycan was of rather low buoyant density and seemed to contain a high proportion of protein. The major part of the heparan sulphate proteoglycan from the medium had a higher buoyant density and contained a smaller amount of protein.  相似文献   

11.
Biosynthesis of proteoglycans by isolated rabbit glomeruli   总被引:8,自引:0,他引:8  
Isolated rabbit glomeruli were incubated in vitro with 35SO4 in order to analyze the proteoglycans synthesized. Proteoglycans extracted with 4 M guanidine HCl from whole isolated glomeruli and from purified glomerular basement membrane (GBM) were analyzed by gel filtration chromatography. Two types of sulfated proteoglycans were found to be synthesized by rabbit glomeruli and these contained either heparan sulfate or chondroitin/dermatan sulfate glycosaminoglycan chains. These glycosaminoglycans were characterized by their sensitivity to selective degradation by nitrous acid or chondroitinase ABC, respectively. The major proteoglycan extracted from the whole glomeruli was a chondroitin/dermatan sulfate species (75%), while purified GBM contained mostly heparan sulfate (70%). The glycosaminoglycan chains were estimated to be about 12,000 molecular weight which is consistent with previous estimates for similar molecules extracted from the rat GBM.  相似文献   

12.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

13.
A heparan sulfate proteoglycan from bovine lung gas-exchange tissue was isolated by extraction of the tissue with 4.0 M guanidine HCl in the presence of multiple protein inhibitors. The proteoglycan was purified by precipitation with cetylpyridinium chloride in 0.5 M KCl followed by CsCl isopycnic centrifugation (po = 1.45) in 4.0 M guanidine/HCl. Further purification was achieved by gel filtration on Sepharose CL-2B and by chromatography in DEAE-Sepharose CL-6B column. The proteoglycan had 14.9% protein and 22.4% uronate. Heparan sulfate chains from the proteoglycan were isolated after beta-elimination. Fractionation of heparan sulfate chains was achieved on Dowex-1 Cl- column, eluting with a stepwise increase in the concentration of NaCl, 1.0 to 2.0 M with 0.2 M increments. Of the total heparan sulfate recovered from the column, about 10% eluted by 1.2 M NaCl, 68% by 1.4 M NaCl, 18% by 1.6 M NaCl and 4% by 1.8 M NaCl. The fractions varied in their total and N-sulfate ester contents and iduronic acid to glucuronic acid ratios. The fraction that eluted from the Dowex-1 Cl- column at 1.6 M NaCl had the highest molecular weight, 37000, and the fraction that eluted at 1.8 M NaCl had the lowest molecular weight, 12000, as determined by gel filtration method, and the greatest sulfate content. The core protein, obtained by digestion of proteoglycan by heparan sulfate lyase, showed mostly a single band in SDS-polyacrylamide gel electrophoresis. The observations indicate a heterogeneity of the composition of heparan sulfate chains in the proteoglycan. This heterogeneity likely contributes to variations in biologic properties of different heparan sulfate proteoglycan preparations.  相似文献   

14.
Hyaluronic acid in cartilage and proteoglycan aggregation   总被引:30,自引:23,他引:7       下载免费PDF全文
1. Dissociation of purified proteoglycan aggregates was shown to release an interacting component of buoyant density higher than that of the glycoprotein-link fraction of Hascall & Sajdera (1969). 2. This component, which produced an increase in hydrodynamic size of proteoglycans on gel chromatography, was isolated by ECTEOLA-cellulose ion-exchange chromatography and identified as hyaluronic acid. 3. The effect of pH of extraction showed that the proportion of proteoglycan aggregates isolated from cartilage was greatest at pH4.5. 4. The proportion of proteoglycans able to interact with hyaluronic acid decreased when extracted above or below pH4.5, whereas the amount of hyaluronic acid extracted appeared constant from pH3.0 to 8.5. 5. Sequential extraction of cartilage with 0.15m-NaCl at neutral pH followed by 4m-guanidinium chloride at pH4.5 was shown to yield predominantly non-aggregated and aggregated proteoglycans respectively. 6. Most of the hyaluronic acid in cartilage, representing about 0.7% of the total uronic acid, was associated with proteoglycan aggregates. 7. The non-aggregated proteoglycans were unable to interact with hyaluronic acid and were of smaller size, lower protein content and lower keratan sulphate content than the disaggregated proteoglycans. Together with differences in amino acid composition this suggested that each type of proteoglycan contained different protein cores.  相似文献   

15.
Large proteoglycan monomers and small dermatan sulfate proteoglycans were extracted from explants of bovine articular cartilage with increasing (0-4 M) concentrations of guanidinium chloride (GuHCl). The first extractions were followed by a second extraction with 4 M GuHCl. The amount of proteoglycans extracted in the first buffer depended on the GuHCl concentration. At low concentrations of GuHCl, a relatively high amount of small proteoglycans was obtained. Fifty percent of the small proteoglycans was extracted in buffer with 0.85 M GuHCl, while 2.0-2.2 M GuHCl was needed to extract half of the large proteoglycans. Immediately after synthesis, 35S-labeled large proteoglycans were extracted much easier (50% at 1.4 M GuHCl), and those extracted at low concentrations of GuHCl were less capable of aggregation with hyaluronic acid. After 7 days of 'chase' these differences between endogenous and 35S-labeled proteoglycans had disappeared.  相似文献   

16.
Cultured human fetal lung fibroblasts produce some chondroitin sulfate proteoglycans that are extracted as an aggregate in chaotropic buffers containing 4 M guanidinium chloride. The aggregated proteoglycans are excluded from Sepharose CL4B and 2B, but become included, eluting with a Kav value of 0.53 from Sepharose CL4B, when Triton X-100 is included in the buffer. Conversely, some of the detergent-extractable chondroitin sulfate proteoglycans can be incorporated into liposomes, suggesting the existence of a hydrophobic membrane-intercalated chondroitin sulfate proteoglycan fraction. Purified preparations of hydrophobic chondroitin sulfate proteoglycans contain two major core protein forms of 90 and 52 kD. A monoclonal antibody (F58-7D8) obtained from the fusion of myeloma cells with spleen cells of BALB/c mice that were immunized with hydrophobic proteoglycans recognized the 90- but not the 52-kD core protein. The epitope that is recognized by the antibody is exposed at the surface of cultured human lung fibroblasts and at the surface of several stromal cells in vivo, but also at the surface of Kupffer cells and of epidermal cells. The core proteins of these small membrane-associated chondroitin sulfate proteoglycans are probably distinct from those previously identified in human fibroblasts by biochemical, immunological, and molecular biological approaches.  相似文献   

17.
Bovine plasma low sulfated chondroitin sulfate-proteoglycan (34 μg/ml plasma), accounting for the main component of acidic glycosaminoglycans in blood, has been purified by isoelectric precipitation, dissociation with 4 M guanidine chloride followed by DEAE-chromatography, Sephadex G-200 chromatography and by preparative polyacrylamide gel electrophoresis. The proteoglycan, having a molecular weight of approx. 44 000, is composed of about 77% protein and 23% glycosaminoglycan at a molar ratio of 1 : 1 which could be cleaved by alkaline treatment into each component. Amino acid analysis of the proteoglycan and its glycosylpeptide has shown that the material is derived from a different origin from other tissue proteoglycans, though the amino acid residues surrounding O-glycosidic linkage to serine residue are quite similar to that of cartilage proteoglycan. Characteristic features of plasma low sulfate chondroitin sulfate-proteoglycan are discussed, compared with tissue materials.  相似文献   

18.
Bovine plasma low sulfated chondroitin sulfate-proteoglycan (34 microgram/ml plasma), accounting for the main component of acidic glycosaminoglycans in blood, has been purified by isoelectric precipitation, dissociation with 4 M guanidine chloride followed by DEAE-chromatography, Sephadex G-200 chromatography and by preparative polyacrylamide gel electrophoresis. The proteoglycan, having a molecular weight of approx. 44,000, is composed of about 77% protein and 23% glycosaminoglycan at a molar ratio of 1 : 1 which could be cleaved by alkaline treatment into each component. Amino acid analysis of the proteoglycan and its glycosylpeptide has shown that the material is derived from a different origin from other tissue proteoglycans, though the amino acid residues surrounding O-glycosidic linkage to serine residue are quite similar to that of cartilage proteoglycan. Characteristic features of plasma low sulfate chondroitin sulfate-proteoglycan are discussed, compared with tissue materials.  相似文献   

19.
The expression and core protein structure of two proteoglycans, the major cartilage proteoglycan isolated from a rat chondrosarcoma and a small molecular weight chondroitin sulfate proteoglycan isolated from a rat yolk sac tumor, have been compared. The cartilage proteoglycan was not detectable in the cartilage tissue of cartilage matrix deficient (cmdcmd) neonatal mice by immunofluorescence, but the cmd cartilage did react with antibodies against the core protein of the yolk sac tumor proteoglycan. Radioimmunoassays showed that the core proteins of these proteoglycans are not cross-reactive with each other. Analysis of the core proteins by sodium dodecyl sulfate/polyacrylamide gel electrophoresis after chondroitinase ABC treatment of the proteoglycan revealed a large difference in their sizes. The cartilage proteoglycan core protein had a molecular weight of about 200,000 while the yolk sac tumor proteoglycan core protein migrated with an apparent molecular weight of about 20,000. In addition, the cultured yolk sac tumor cells that make the small proteoglycan did not react with antiserum against the cartilage proteoglycan. These results indicate that the proteoglycan isolated from the yolk sac tumor is similar to the small chondroitin sulfate proteoglycan species found in cartilage and support the existence of at least two dissimilar and genetically independent chondroitin sulfate proteoglycan core proteins.  相似文献   

20.
Bovine glomerular basement membrane was extracted with 6 M guanidinium chloride and the soluble material fractionated on a Bio-Gel A-1.5m column in 1% Na dodecyl-SO4. A single component was obtained by reduction of a selected column fraction with 2-mercaptoethanol followed by chromatography on an analytical Bio-Gel A-1.5m column and shown to be homogenous by electrophoresis and ultracentrifugation. It consists of 90% protein and 8.6% carbohydrate by weight. The amino acid composition is characterized by the presence of low amounts of hydroxyproline and hydroxylysine, and substantial amounts of aspartic acid, glutamic acid, half-cystine, and glycine. It contains all the monosaccharide constituents present in the whole basement membrane indicating the presence of both heteropolysaccharide and disaccharide units; the presence of the latter unit was demonstrated unequivocally by ion exchange chromatography. The component contains 1 heteropolysaccharide unit and 4 dissaccharide units/molecule of Mr equals 70,000. The molecular weight of component VII was determined by several methods. Molecular weight values of 68,000 +/- 3,000 and 72,000 +/- 2,000 were determined in 6 M guanidinium chloride by the methods of sedimentation equilibrium and gel filtration chromatography, respectively, and values of 136,000 +/- 3,100 and 140,000 +/- 2,000 were determined in 1% Na dodecyl-SO4 by the methods of polyacrylamide gel electrophoresis and gel filtration chromatography, respectively. Circular dichroism spectra indicate that component VII assumes a random coil conformation in 6 M guanidinium chloride and a more disordered conformation in 1% Na dodecyl-SO4 than standard proteins used in calibration of polyacrylamide gels and gel filtration column. These results indicate that the minimal molecular weight of component VII is about 70,000 and that the anomalous behavior in Na dodecyl-SO4 is due in part to its conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号