首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ma JK  Wang Y  Carrell CJ  Mathews FS  Davidson VL 《Biochemistry》2007,46(39):11137-11146
Amicyanin is a type 1 copper protein that is the natural electron acceptor for the quinoprotein methylamine dehydrogenase (MADH). A P52G amicyanin mutation increased the Kd for complex formation and caused the normally true electron transfer (ET) reaction from O-quinol MADH to amicyanin to become a gated ET reaction (Ma, J. K., Carrell, C. J., Mathews, F. S., and Davidson, V. L. (2006) Biochemistry 45, 8284-8293). One consequence of the P52G mutation was to reposition the side chain of Met51, which is present at the MADH-amicyanin interface. To examine the precise role of Met51 in this interprotein ET reaction, Met51 was converted to Ala, Lys, and Leu. The Kd for complex formation of M51A amicyanin was unchanged but the experimentally determined electronic coupling increased from 12 cm-1 to 142 cm-1, and the reorganization energy increased from 2.3 to 3.1 eV. The rate and salt dependence of the proton transfer-gated ET reaction from N-quinol MADH to amicyanin is also changed by the M51A mutation. These changes in ET parameters and rates for the reactions with M51A amicyanin were similar to those caused by the P52G mutation and indicated that the ET reaction had become gated by a similar process, most likely a conformational rearrangement of the protein ET complex. The results of the M51K and M51L mutations also have consequences on the kinetic mechanism of regulation of the interprotein ET with effects that are intermediate between what is observed for the reaction of the native amicyanin and M51A amicyanin. These data indicate that the loss of the interactions involving Pro52 were primarily responsible for the change in Kd for P52G amicyanin, while the interactions involving the Met51 side chain are entirely responsible for the change in ET parameters and conversion of the true ET reaction of native amicyanin into a conformationally gated ET reaction.  相似文献   

2.
Amicyanin is a type 1 copper protein that serves as an electron acceptor for methylamine dehydrogenase (MADH). The site of interaction with MADH is a "hydrophobic patch" of amino acid residues including those that comprise a "ligand loop" that provides three of the four copper ligands. Three prolines are present in this region. Pro94 of the ligand loop was previously shown to strongly influence the redox potential of amicyanin but not affinity for MADH or mechanism of electron transfer (ET). In this study Pro96 of the ligand loop was mutated. P96A and P96G mutations did not affect the spectroscopic or redox properties of amicyanin but increased the K(d) for complex formation with MADH and altered the kinetic mechanism for the interprotein ET reaction. Values of reorganization energy (λ) and electronic coupling (H(AB)) for the ET reaction with MADH were both increased by the mutation, indicating that the true ET reaction observed with native amicyanin was now gated by or coupled to a reconfiguration of the proteins within the complex. The crystal structure of P96G amicyanin was very similar to that of native amicyanin, but notably, in addition to the change in Pro96, the side chains of residues Phe97 and Arg99 were oriented differently. These two residues were previously shown to make contacts with MADH that were important for stabilizing the amicyanin-MADH complex. The values of K(d), λ, and H(AB) for the reactions of the Pro96 mutants with MADH are remarkably similar to those obtained previously for P52G amicyanin. Mutation of this proline, also in the hydrophobic patch, caused reorientation of the side chain of Met51, another reside that interacted with MADH and caused a change in the kinetic mechanism of ET from MADH. These results show that proline residues near the copper site play key roles in positioning other amino acid residues at the amicyanin-MADH interface not only for specific binding to the redox protein partner but also to optimize the orientation of proteins for interprotein ET.  相似文献   

3.
Sun D  Li X  Mathews FS  Davidson VL 《Biochemistry》2005,44(19):7200-7206
Amicyanin is a type I copper protein that mediates electron transfer (ET) from methylamine dehydrogenase (MADH) to cytochrome c-551i. Pro(94) resides in the "ligand loop" of amicyanin, a sequence of amino acids that contains three of the four copper ligands. ET from the reduced O-quinol tryptophan tryptophylquinone of MADH to oxidized P94A amicyanin is a true ET reaction that exhibits values of electronic coupling (H(AB)) and reorganization energy (lambda) that are the same as for the reaction of native amicyanin. In contrast, the parameters for the ET reaction from reduced P94A amicyanin to oxidized cytochrome c-551i have been significantly altered as a consequence of the mutation. These values of H(AB) and lambda are 8.3 cm(-)(1) and 2.3 eV, respectively, compared to values of 0.3 cm(-)(1) and 1.2 eV for the reaction of native reduced amicyanin. The crystal structure of reduced P94A amicyanin exhibits two alternate conformations with the positions of the copper 1.4 A apart [Carrell, C. J., Sun, D., Jiang, S., Davidson, V. L., and Mathews, F. S. (2004) Biochemistry 43, 9372-9380]. In one of these, conformation B, a water molecule has replaced Met(98) as a copper ligand, and the ET distance to the heme of the cytochrome is increased by 1.4 A. Analysis of these structures suggests that the true k(ET) for ET from the copper in conformation B to heme would be much less than for ET from conformation A. A novel kinetic mechanism is proposed to explain these data in which the reduction of Cu(2+) by methylamine dehydrogenase is a true ET reaction while the oxidation of Cu(1+) by cytochrome c-551i is kinetically coupled ET. By comparison of the temperature dependence of the observed rate of the coupled ET reaction from reduced P94A amicyanin to cytochrome c-551i with the predicted rates and temperature dependence for the true ET reaction from conformation A, it was possible to determine the K(eq) and values of DeltaH degrees and DeltaS degrees that are associated with the non-ET reaction that modulates the observed ET rate.  相似文献   

4.
Interprotein electron transfer (ET) occurs between the tryptophan tryptophylquinone (TTQ) prosthetic group of aromatic amine dehydrogenase (AADH) and copper of azurin. The ET reactions from two chemically distinct reduced forms of TTQ were studied: an O-quinol form that was generated by reduction by dithionite, and an N-quinol form that was generated by reduction by substrate. It was previously shown that on reduction by substrate, an amino group displaces a carbonyl oxygen on TTQ, and that this significantly alters the rate of its oxidation by azurin (Hyun, Y-L., and Davidson V. L. (1995) Biochemistry 34, 12249-12254). To determine the basis for this change in reactivity, comparative kinetic and thermodynamic analyses of the ET reactions from the O-quinol and N-quinol forms of TTQ in AADH to the copper of azurin were performed. The reaction of the O-quinol exhibited values of electronic coupling (H(AB)) of 0.13 cm(-1) and reorganizational energy (lambda) of 1.6 eV, and predicted an ET distance of approximately 15 A. These results are consistent with the ET event being the rate-determining step for the redox reaction. Analysis of the reaction of the N-quinol by Marcus theory yielded an H(AB) which exceeded the nonadiabatic limit and predicted a negative ET distance. These results are diagnostic of a gated ET reaction. Solvent deuterium kinetic isotope effects of 1.5 and 3.2 were obtained, respectively, for the ET reactions from O-quinol and N-quinol AADH indicating that transfer of an exchangeable proton was involved in the rate-limiting reaction step which gates ET from the N-quinol, but not the O-quinol. These results are compared with those for the ET reactions from another TTQ enzyme, methylamine dehydrogenase, to amicyanin. The mechanism by which the ET reaction of the N-quinol is gated is also related to mechanisms of other gated interprotein ET reactions.  相似文献   

5.
Methylamine dehydrogenase (MADH) possesses an alpha(2)beta(2) subunit structure with each smaller beta subunit possessing a tryptophan tryptophylquinone (TTQ) prosthetic group. Phe(55) of the alpha subunit is located where the substrate channel from the enzyme surface opens into the active site. Site-directed mutagenesis studies have revealed several roles for this residue in catalysis and electron transfer (ET) by MADH. Site-directed mutagenesis of either alpha Phe(55) or beta Ile(107) (a residue in the beta subunit which interacts with alpha Phe(55)) converts MADH into enzymes with specificities for long-chain amines, amylamine or propylamine. Mutation of alpha Phe(55) also affects monovalent cation binding to the active site. alpha F55A MADH exhibits an increased K(d) for cation-dependent spectral changes and a decreased K(d) for cation-dependent stimulation of the rate of gated ET from N-quinol MADH to amicyanin. These results demonstrate that alpha Phe(55) is able to directly participate in a wide range of biochemical processes not typically observed for a phenylalanine residue.  相似文献   

6.
Sun D  Davidson VL 《Biochemistry》2001,40(41):12285-12291
Methylamine dehydrogenase (MADH) is a tryptophan tryptophylquinone (TTQ)-dependent enzyme that catalyzes the oxidative deamination of primary amines. Monovalent cations are known to affect the spectral properties of MADH and to influence the rate of the gated electron transfer (ET) reaction from substrate-reduced MADH to amicyanin. Two putative monovalent cation binding sites in MADH have been identified by X-ray crystallography [Labesse, G., Ferrari, D., Chen, Z.-W., Rossi, G.-L., Kuusk, V., McIntire, W. S., and Mathews, F. S. (1998) J. Biol. Chem. 273, 25703-25712]. One requires cation-pi interactions involving residue alpha Phe55. An alpha F55A mutation differentially affects these two monovalent cation-dependent phenomena. The apparent K(d) associated with spectral perturbations increases 10-fold. The apparent K(d) associated with enhancement of the gated ET reaction becomes too small to measure, indicating that either it has decreased more than 1000-fold or the mutation has caused a conformational change that eliminates the requirement for the cation for the gated ET. These results show that of the two binding sites revealed in the structure, cation binding to the distal site, which is stabilized by the cation-pi interactions, is responsible for the spectral perturbations. Cation binding to the proximal site, which is stabilized by several oxygen ligands, is responsible for the enhancement of the rate of gated ET. Another site-directed mutant, alpha F55E MADH, exhibited cation binding properties that were the same as those of the native enzyme, indicating that interactions with the carboxylate of Glu can effectively replace the cation-pi interactions with Phe in stabilizing monovalent cation binding to the distal site.  相似文献   

7.
Sun D  Chen ZW  Mathews FS  Davidson VL 《Biochemistry》2002,41(47):13926-13933
Methylamine dehydrogenase (MADH) possesses an alpha(2)beta(2) structure with each smaller beta subunit possessing a tryptophan tryptophylquinone (TTQ) prosthetic group. Phe55 of the alpha subunit is located where the substrate channel from the enzyme surface opens into the active site. Site-directed mutagenesis of alphaPhe55 has revealed roles for this residue in determining substrate specificity and binding monovalent cations at the active site. It is now shown that the alphaF55A mutation also increases the rate of the true electron transfer (ET) reaction from O-quinol MADH to amicyanin. The reorganization energy associated with the ET reaction is decreased from 2.3 to 1.8 eV. The electronic coupling associated with the ET reaction is decreased from 12 to 3 cm(-1). The crystal structure of alphaF55A MADH in complex with its electron acceptors, amicyanin and cytochrome c-551i, has been determined. Little difference in the overall structure is seen, relative to the native complex; however, there are significant changes in the solvent content of the active site and substrate channel. The crystal structure of alphaF55A MADH has also been determined with phenylhydrazine covalently bound to TTQ in the active site. Phenylhydrazine binding significantly perturbs the orientation of the TTQ rings relative to each other. The ET results are discussed in the context of the new and old crystal structures of the native and mutant enzymes.  相似文献   

8.
Ma JK  Mathews FS  Davidson VL 《Biochemistry》2007,46(29):8561-8568
Mutation of the axial Met ligand of the type 1 copper site of amicyanin to Ala or Gln yielded M98A amicyanin, which exhibits typical axial type 1 ligation geometry but with a water molecule providing the axial ligand, and M98Q amicyanin, which exhibits significant rhombic distortion of the type 1 site (Carrell, C. J., Ma, J. K., Antholine, W. E., Hosler, J. P., Mathews, F. S., and Davidson, V. L. (2007) Biochemistry 46, 1900-1912). Despite the change of the axial ligand, the M98Q and M98A mutations had little effect on the redox potential of copper. The true electron transfer (ET) reactions from O-quinol methylamine dehydrogenase to oxidized native and mutant amicyanins revealed that the M98A mutation had little effect on kET, but the M98Q mutation reduced kET 45-fold. Thermodynamic analysis of the latter showed that the decrease in kET was due to an increase of 0.4 eV in the reorganization energy (lambda) associated with the ET reaction to M98Q amicyanin. No change in the experimentally determined electronic coupling or ET distance was observed, confirming that the mutation had not altered the rate-determining step for ET and that this was still a true ET reaction. The basis for the increased lambda is not the nature of the atom that provides the axial ligand because each uses an oxygen from Gln in M98Q amicyanin and from water in M98A amicyanin. Comparisons of the distance of the axial copper ligand from the equatorial plane that is formed by the other three copper ligands in isomorphous crystals of native and mutant amicyanins at atomic resolution indicate an increase in distance from 0.20 A in the native to 0.42 A in M98Q amicyanin and a slight decrease in distance for M98A amicyanin. This correlates with the rhombic distortion caused by the M98Q mutation that is clearly evident in the EPR and visible absorption spectra of the protein and suggests that the extent of rhombicity of the type 1 copper site influences the magnitude of lambda.  相似文献   

9.
Zhu Z  Jones LH  Graichen ME  Davidson VL 《Biochemistry》2000,39(30):8830-8836
Methylamine dehydrogenase (MADH) and amicyanin form a physiologic complex which is required for interprotein electron transfer. The crystal structure of this protein complex is known, and the importance of certain residues on amicyanin in its interaction with MADH has been demonstrated by site-directed mutagenesis. In this study, site-directed mutagenesis of MADH, kinetic data, and thermodynamic analysis are used to probe the molecular basis for stabilization of the protein complex by an interprotein salt bridge between Arg99 of amicyanin and Asp180 of the alpha subunit of MADH. This paper reports the first site-directed mutagenesis of MADH, as well as the construction, heterologous expression, and characterization of a six-His-tagged MADH. alpha Asp180 of MADH was converted to arginine to examine the effect on complex formation with native and mutant amicyanins. This mutation had no effect on the parameters for methylamine oxidation by MADH, but significantly affected its interaction with amicyanin. Of the native and mutant proteins that were studied, their observed order of affinity for each other was as follows: native MADH and native amicyanin > native MADH and R99D amicyanin > alpha D180R MADH and native amicyanin > alpha D180R MADH and R99D amicyanin, and alpha D180R MADH and R99L amicyanin. The alpha D180R mutation also eliminated the ionic strength dependence of the reaction of MADH with amicyanin that is observed with wild-type MADH. Interestingly, the inverse mutation pair of alpha D180R MADH and R99D amicyanin did not restore the favorable salt bridge, but instead disrupted complex formation much more severely than did either individual mutation. These results are explained using molecular modeling and thermodynamic analysis of the kinetic data to correlate the energy contributions of specific stabilizing and destabilizing interactions that are present in the wild-type and mutant complexes. A model is also proposed to describe the sequence of events that leads to stable complex formation between MADH and amicyanin.  相似文献   

10.
Sun D  Davidson VL 《Biochemistry》2003,42(6):1772-1776
Within the methylamine dehydrogenase-amicyanin-cytochrome c-551i complex, electrons are transferred from tryptophan tryptophylquinone (TTQ) to heme via the type I copper center of amicyanin. Mutation of Pro94 of amicyanin to Phe increases the redox potential of the copper center within the protein complex by approximately 195 mV. This introduces a large energy barrier for the second electron transfer (ET) step in this three-protein ET chain. As a consequence of this mutation, the ET rate from TTQ to copper exhibits about a 6-fold increase and the ET rate from copper to heme exhibits about a 100-fold decrease. These changes in ET rate are consistent with the predictions of Marcus theory. Temperature dependence studies of these reactions indicate that the reorganization energies for the ET to and from the copper center are unchanged by the P94F mutation, despite the large change in redox potential that it causes. Steady-state kinetic studies indicate that despite the large energy barrier for the ET from copper to heme, methylamine-dependent reduction of heme by the three-protein complex with P94F amicyanin goes to completion. The turnover number for this steady-state reaction, however, is decreased 50-fold relative to that of the native complex. As a consequence of the P94F mutation, the rate constant for the unfavorable uphill ET reaction from copper to heme has become the rate-limiting step in the overall reaction. The evolutionary implications of the effects of this mutation on the function of this naturally occurring simple ET chain are discussed.  相似文献   

11.
Davidson VL 《Biochemistry》2000,39(16):4924-4928
Coupled electron transfer (ET) occurs when a relatively slow nonadiabatic ET reaction is preceded by a rapid but unfavorable adiabatic reaction that is required to activate the system for ET. As a consequence of this, the observed ET rate constant (k(ET)) is an apparent value equal to the product of the true k(ET) and the equilibrium constant for the preceding reaction step. Analysis of such reactions by ET theory may yield erroneous values for the reorganizational energy (lambda), electronic coupling (H(AB)), and ET distance that are associated with the true k(ET). If the DeltaG degrees dependence of the rate of a coupled ET reaction is analyzed, an accurate value of lambda will be obtained but the experimentally determined H(AB) will be less than the true H(AB) and the ET distance will be greater than the true distance. If the temperature dependence of the rate of a coupled ET reaction is analyzed, the experimentally determined value of lambda will be greater than the true lambda. The magnitude of this apparent lambda will depend on the magnitude of DeltaH degrees for the unfavorable reaction step that precedes ET. The experimentally determined values of H(AB) and distance will be accurate if DeltaS degrees for the preceding reaction is zero. If DeltaS degrees is positive, then H(AB) will be greater than the true value and the distance will be less than the true value. If DeltaS degrees is negative, then H(AB) will be less than the true value and the distance will be greater than the true value. Data sets for coupled ET reactions have been simulated and analyzed by ET theory to illustrate these points.  相似文献   

12.
Methylamine dehydrogenase (MADH) is produced by a range of gram-negative methylotrophic and autotrophic bacteria, and allows the organisms to utilise methylamine as the sole source of carbon. The enzyme catalyses the oxidation of methylamine to formaldehyde and ammonia, leaving it in a two-electron reduced state. To complete the catalytic cycle, MADH is reoxidised via an electron transfer (ET) chain. The redox center in the enzyme is the organic cofactor tryptophan tryptophylquinone (TTQ) derived from the posttranslational modification of two Trp residues in the protein. This cofactor has spectral features in the visible region, which change during catalytic turnover, defining spectrally distinct reaction intermediates that reflect the electronic state of the TTQ. In the case of the Paracoccus denitrificans enzyme the physiologic ET chain involves the protein redox partner amicyanin (a blue copper protein). A stable binary (MADH/amicyanin) complex can be formed, and its crystal structure has been solved to 2.5 A resolution by Chen et al. [Biochemistry 21 (1992) 4959]. These crystals were shown to be competent for catalysis and ET by Merli et al. [J. Biol. Chem. 271 (1996) 9177] using single crystal polarised absorption spectroscopy. Through a novel combination of single crystal visible microspectrophotometry, X-ray crystallography and freeze-trapping, we have trapped reaction intermediates of the enzyme in complex with its physiological redox partner amicyanin in the crystalline state. We will present data confirming that catalysis and ET in the binary complex crystals can be tracked by single crystal visible microspectrophotometry. We will also show that the reaction pathway is unperturbed by the presence of cryoprotectant solution, enabling direct freeze-trapping of reaction intermediates within the crystal. We will present new data demonstrating that the binary complex crystals are also capable of exhibiting UV light-dependent oxidase activity, as observed in solution [Biochim. Biophys. Acta 1364 (1998) 297].  相似文献   

13.
A ternary electron transfer protein complex has been crystallized and a preliminary structure investigation has been carried out. The complex is composed of a quinoprotein, methylamine dehydrogenase (MADH), a blue copper protein, amicyanin, and a c-type cytochrome (c551i). All three proteins were isolated from Paracoccus denitrificans. The crystals of the complex are orthorhombic, space group C222(1) with cell dimensions a = 148.81 A, b = 68.85 A, and c = 187.18 A. Two types of isomorphous crystals were prepared: one using native amicyanin and the other copper-free apo-amicyanin. The diffraction data were collected at 2.75 A resolution from the former and at 2.4 A resolution from the latter. The location of the MADH portion was determined by molecular replacement. The copper site of the amicyanin molecule was located in an isomorphous difference Fourier while the iron site of the cytochrome was found in an anomalous difference Fourier. The MADH from P. denitrificans (PD-MADH) is an H2L2 hetero-tetramer with the H subunit containing 373 residues and the L subunit 131 residues, the latter containing a novel redox cofactor, tryptophan tryptophylquinone (TTQ). The amicyanin of P. denitrificans contains 105 residues and the cytochrome c551i contains 155 residues. The ternary complex consists of one MADH tetramer with two molecules of amicyanin and two of c551i, forming a hetero-octamer; the octamer is located on a crystallographic diad. The relative positions of the three redox centers--i.e., the TTQ of MADH, the copper of amicyanin, and the heme group of c55li--are presented.  相似文献   

14.
The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-A resolution using molecular replacement. The search model was MADH from Thiobacillus versutus. The amicyanin could be located in an averaged electron density difference map and the model improved by refinement and model building procedures. Nine beta-strands are observed within the amicyanin molecule. The copper atom is located between three antiparallel strands and is about 2.5 A below the protein surface. The major intermolecular interactions occur between amicyanin and the light subunit of MADH where the interface is largely hydrophobic. The copper atom of amicyanin and the redox cofactor of MADH are about 9.4 A apart. One of the copper ligands, His 95, lies between the two redox centers and may facilitate electron transfer between them.  相似文献   

15.
The crystal structure of an electron transfer complex of aromatic amine dehydrogenase (AADH) and azurin is presented. Electrons are transferred from the tryptophan tryptophylquinone (TTQ) cofactor of AADH to the type I copper of the cupredoxin azurin. This structure is compared with the complex of the TTQ-containing methylamine dehydrogenase (MADH) and the cupredoxin amicyanin. Despite significant similarities between the two quinoproteins and the two cupredoxins, each is specific for its respective partner and the ionic strength dependence and magnitude of the binding constant for each complex are quite different. The AADH-azurin interface is largely hydrophobic, covering approximately 500 A(2) of surface on each molecule, with one direct hydrogen bond linking them. The closest distance from TTQ to copper is 12.6 A compared with a distance of 9.3 A in the MADH-amicyanin complex. When the MADH-amicyanin complex is aligned with the AADH-azurin complex, the amicyanin lies on top of the azurin but is oriented quite differently. Although the copper atoms differ in position by approximately 4.7 A, the amicyanin bound to MADH appears to be rotated approximately 90 degrees from its aligned position with azurin. Comparison of the structures of the two complexes identifies features of the interface that dictate the specificity of the protein-protein interaction and determine the rate of interprotein electron transfer.  相似文献   

16.
Zhu Z  Davidson VL 《Biochemistry》1999,38(15):4862-4867
The two-electron oxidation of tryptophan tryptophylquinone (TTQ) in substrate-reduced methylamine dehydrogenase (MADH) by amicyanin is known to proceed via an N-semiquinone intermediate in which the substrate-derived amino group remains covalently attached to TTQ [Bishop, G. R., and Davidson, V. L. (1996) Biochemistry 35, 8948-8954]. A new method for the stoichiometric formation of the N-semiquinone in vitro has allowed the study of the oxidation of the N-semiquinone by amicyanin in greater detail than was previously possible. Conversion of N-semiquinone TTQ to the quinone requires two biochemical events, electron transfer to amicyanin and release of ammonia from TTQ. Using rapid-scanning stopped-flow spectroscopy, it is shown that this occurs by a sequential mechanism in which oxidation to an imine (N-quinone) precedes hydrolysis by water and ammonia release. Under certain reaction conditions, the N-quinone intermediate accumulates prior to the relatively slow hydrolysis step. Correlation of these transient kinetic data with steady-state kinetic data indicates that the slow hydrolysis of the N-quinone by water does not occur in the steady state. In the presence of excess substrate, the next methylamine molecule initiates a nucleophilic attack of the N-quinone TTQ, causing release of ammonia that is concomitant with the formation of the next enzyme-substrate cofactor adduct. In light of these results, the usually accepted steady-state reaction mechanism of MADH is revised and clarified to indicate that reactions of the quinone form of TTQ are side reactions of the normal catalytic pathway. The relevance of these conclusions to the reaction mechanisms of other enzymes with carbonyl cofactors, the reactions of which proceed via Schiff base intermediates, is also discussed.  相似文献   

17.
M Choi  S Shin  VL Davidson 《Biochemistry》2012,51(35):6942-6949
Respiration, photosynthesis, and metabolism require the transfer of electrons through and between proteins over relatively long distances. It is critical that this electron transfer (ET) occur with specificity to avoid cellular damage, and at a rate that is sufficient to support the biological activity. A multistep hole hopping mechanism could, in principle, enhance the efficiency of long-range ET through proteins as it does in organic semiconductors. To explore this possibility, two different ET reactions that occur over the same distance within the protein complex of the diheme enzyme MauG and different forms of methylamine dehydrogenase (MADH) were subjected to kinetic and thermodynamic analysis. An ET mechanism of single-step direct electron tunneling from diferrous MauG to the quinone form of MADH is consistent with the data. In contrast, the biosynthetic ET from preMADH, which contains incompletely synthesized tryptophan tryptophylquinone, to the bis-Fe(IV) form of MauG is best described by a two-step hole hopping mechanism. Experimentally determined ET distances matched the distances determined from the crystal structure that would be expected for single-step tunneling and multistep hopping. Experimentally determined relative values of electronic coupling (H(AB)) for the two reactions correlated well with the relative H(AB) values predicted from computational analysis of the structure. The rate of the hopping-mediated ET reaction is also 10-fold greater than that of the single-step tunneling reaction despite a smaller overall driving force for the hopping-mediated ET reaction. These data provide insight into how the intervening protein matrix and redox potentials of the electron donor and acceptor determine whether the ET reaction proceeds via single-step tunneling or multistep hopping.  相似文献   

18.
The obligate methylotroph Methylomonas sp. strain J produces two azurins (Az-iso1 and Az-iso2) as candidates for electron acceptor from methylamine dehydrogenase (MADH) in the electron-transfer process involving the oxidation of methylamine to formaldehyde and ammonia. The X-ray crystallographic study indicated that Az-iso2 gives two types of crystals (form I and form II) with polyethylene glycol (PEG4000) and ammonium sulfate as the precipitants, respectively. Comparison between the two Az-iso2 structures in forms I and II reveals the remarkable structural changes at the top surface of the molecule around the copper atom. Az-iso2 possesses Gly43 instead of Val43 or Ala43, which is unique among all other azurins around the copper ligand His46, inducing the remarkable structural change in the loop region from Gly37 to Gly43. When the structure of Az-iso2 is superimposed on that of amicyanin in the ternary complex composed of MADH, amicyanin, and cytochrome c(551), the loop of Az-iso2 deeply overlaps with the light subunit of MADH. However, the Az-iso2 molecule is probably able to avoid any steric hindrance with the cognate MADH to form the complex for intermolecular electron-transfer reaction, since the loop containing Gly43 is flexible. We discuss why the electron-transfer activity of Az-iso2 is fivefold higher than that of Az-iso1.  相似文献   

19.
Davidson VL 《Biochemistry》2002,41(50):14633-14636
Long-range protein electron transfer [ET] reactions may be relatively slow because of long ET distance and low driving force. It is possible to dramatically increase the rate of such nonadiabatic reactions by using an adiabatic chemical reaction to activate the system for rapid ET. Three such examples are discussed; nitrogenase, pyruvate:ferredoxin oxidoreductase, and the methylamine dehydrogenase-amicyanin complex. In each example, the faster activated ET reaction is gated (i.e., rate-limited) by the chemical reaction. However, the reaction rate is still orders of magnitude greater than that of the ungated true ET reaction in the absence of chemical activation. Models are presented to describe the mechanisms of activation in the context of ET theory, and the relevance of such chemically gated ET to the regulation of metabolism is discussed.  相似文献   

20.
The genes encoding amicyanin and the beta-subunit of methylamine dehydrogenase (MADH) from Thiobacillus versutus have been cloned and sequenced. The organization of these genes makes it likely that they are coordinately expressed and it supports earlier findings that the blue copper protein amicyanin is involved in electron transport from methylamine to oxygen. The amino acid sequence deduced from the nucleotide sequence of the amicyanin-encoding gene is in agreement with the published protein sequence. The gene codes for a pre-protein with a 25-amino-acid-long signal peptide. The amicyanin gene could be expressed efficiently in Escherichia coli. The protein was extracted with the periplasmic fraction, indicating that pre-amicyanin is translocated across the inner membrane of E. coli. Sequence studies on the purified beta-subunit of MADH confirm the amino acid sequence deduced from the nucleotide sequence of the corresponding gene. The latter codes for a pre-protein with an unusually long (56 amino acids) leader peptide. The sequencing results strongly suggest that pyrroloquinoline quinone (PQQ) or pro-PQQ is not the co-factor of MADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号