首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main molecular mechanisms explaining the well-established antioxidant and reducing activity of N-acetylcysteine (NAC), the N-acetyl derivative of the natural amino acid l-cysteine, are summarised and critically reviewed. The antioxidant effect is due to the ability of NAC to act as a reduced glutathione (GSH) precursor; GSH is a well-known direct antioxidant and a substrate of several antioxidant enzymes. Moreover, in some conditions where a significant depletion of endogenous Cys and GSH occurs, NAC can act as a direct antioxidant for some oxidant species such as NO2 and HOX. The antioxidant activity of NAC could also be due to its effect in breaking thiolated proteins, thus releasing free thiols as well as reduced proteins, which in some cases, such as for mercaptoalbumin, have important direct antioxidant activity. As well as being involved in the antioxidant mechanism, the disulphide breaking activity of NAC also explains its mucolytic activity which is due to its effect in reducing heavily cross-linked mucus glycoproteins. Chemical features explaining the efficient disulphide breaking activity of NAC are also explained.  相似文献   

2.
Phloretin is a dihydrochalcone flavonoid that displays a potent antioxidant activity in peroxynitrite scavenging and the inhibition of lipid peroxidation. Comparison with structurally related compounds revealed that the antioxidant pharmacophore of phloretin is 2,6-dihydroxyacetophenone. The potent activity of 2,6-dihydroxyacetophenone is due to stabilisation of its radical via tautomerisation. The antioxidant pharmacophore in the dihydrochalcone phloretin, i.e., the 2,6-dihydroxyacetophenone group, is different from the antioxidant pharmacophores previously reported in flavonoids.  相似文献   

3.
In vivo antioxidant activity seems to be quite complicate due to multiple interaction with biomaterials and differs from results by in vitro experiments. In vivo estimation of antioxidant activity is performed by measuring TBA reactive substances in blood or hydrocarbon gases in breath, but these systems do not measure free radical reaction but the final products of oxidative reaction. In the present study, we applied in vivo ESR to evaluate antioxidant activity by monitoring the redox reaction of nitroxide radical and clearly found that the nitroxide is very susceptible to oxidative stress in vivo and quite useful to evaluate antioxidant activity non-invasively.  相似文献   

4.
Beneficial effects of whole grains of cereals and pseudocereals and their fractions to human physiology are well known and broadly published. Especially secondary metabolites, dominantly from the category of phenolics (or polyphenols), beneficially influence the health physiology and/or prevent disease progress. Within the frame of this study, ten genotypes of four cereals or pseudocereals, respectively, were chosen for their antioxidant activity, determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and β-carotene-linoleic acid bleaching model (BCLM) mechanisms. Tested genotypes were selected from primary collection based on their antioxidant activity values, as well as higher level of flavonoids or phenolic acids. The stability of antioxidant properties after thermic, acidic, and basic treatments was evaluated. The oat cultivar Sirene and buckwheat cultivar Bogatyr expressed high level of the antioxidant activity, but they lost it due to all types of treatment. Oppositely, treatments increased antioxidant activities in some samples, especially in oat cultivar Maris Oberon, wheat cultivar Ines and Karolinum, or partially in barley cultivars Kompakt (after basic treatment) and Jubilant (acidic and basic treatments). The lack of the antioxidant activity could be observed due to destruction of the key compounds responsible for the antioxidant effect, whereas the increasing activity could be seen due to release of the aglycons from glycosidic forms after treatment. The stability of antioxidant properties could be a valuable parameter of the raw material for manufacturing special foods with functional properties.  相似文献   

5.
The ability of Rhizopus oligosporus to produce enhanced levels of free phenolics from pineapple residue mixed with soy flour as potential nitrogen source was investigated. Concurrently, phenolic-linked β-glucosidase and the antioxidant activity of the extracts were followed. Two treatments were studied: (A) 9 g of pineapple residue and 1 g of soy flour (P9); (B) 5 g of pineapple residue and 5 g of soy flour (P5). The increase of water extractable phenolics was 39.3% for P9 treatment and 79.4% for P5 treatment. During early stages of growth high antioxidant activity, low phenolic content and low β-glucosidase specific activity was observed. High antioxidant activity was likely due to the presence of insoluble polymeric phenolics, know for their high antioxidant activity. A marked decrease of the antioxidant activity of P5 treatment during late stages of growth was observed due to likely formation of free soluble phenolics. The moderate total phenolics content and high β-glucosidase specific activity of P9 treatment in late stages is likely the consequence of low nitrogen content in this treatment. The bioconversion of pineapple residue by R. oligosporus leads to enhanced levels of phenolic compounds, mainly for P5 treatment. This approach offers a novel strategy to enhance the value of pineapple wastes.  相似文献   

6.
The polyamines spermine and spermidine and the diamine putrescine inhibit lipid peroxidation in phospholipid liposome suspensions and rat liver homogenates. Using the chemiluminescence technique the antioxidant activity of polyamines was found to be due to reactions with the free radical intermediates of lipid peroxidation and/or superoxide radicals. Also, the antioxidant action of polyamines correlated with the amount of their amino groups: the antioxidant activity increases from putrescine to spermine.  相似文献   

7.
A series of vanilloid-type beta-adrenoceptor blockers derived from antioxidant traditional Chinese herbal medicines were synthesized and tested for their antioxidant and adrenoceptor antagonistic activities. They all possessed significant beta-adrenoceptor blocking activities under in vitro experiments and radioligand binding assays. In addition, some compounds were further examined in in vivo tests and produced antagonist effects matching that of propranolol and labetalol by measurements of antagonism toward (-)isoproterenol-induced tachycardia and (-)phenylephrine-induced pressor responses in anesthetized rats. Furthermore, all of the compounds had antioxidant effects inherited from their original structures. In conclusion, compound 11 had the most potent beta-adrenoceptors blocking activity, 12 and 13 possessed high cardioselectivity, whereas 14, 15 and 16 possessed additional alpha-adrenoceptor blocking activity and 15 is the most effective antioxidant of all. The antioxidant activity may be due to their alpha and beta unsaturated side chain at position 1 and ortho-substituted methoxy moiety on 4-phenoxyethylamine.  相似文献   

8.
Increase in reactive oxygen species plays an integral part in the inflammatory response, and chronic inflammation increases cancer risk. Selenium-dependent glutathione peroxidase (GPX) is well recognized for its antioxidant, and thus anti-inflammatory, activity. However, due to the multiple antioxidant families present in the gastrointestinal tract, it has been difficult to demonstrate the importance of individual antioxidant enzymes. Using genetically altered mice deficient in individual Gpx genes has provided insight into the physiological functions of these genes. Insufficient GPX activity in the mucosal epithelium can trigger acute and chronic inflammation. The presence of certain microflora, such as Helicobacter species, may affect cancer risk significantly. However, when damaged cells have progressed into a precancerous status, increased GPX activity may become procarcinogenic, presumably due to inhibition of hydroperoxide-mediated apoptosis. This review summarizes the current view of GPX in inflammation and cancer with emphasis on the GI tract.  相似文献   

9.
Antioxidant activity of human serum albumin (HSA) increased steeply as the reaction mixture was shifted from neutral to alkaline pH. The antioxidant activity was also remarkably increased by Ca(2+) or a cationic detergent (cetyltrimethylammonium chloride). Carboxyl group modification of HSA resulted in about 40-fold increase of the antioxidant activity. The chemical modification study indicated that in addition to functional cysteine(s), cationic amino acid residues such as histidine, arginine and lysine appeared to involve in the antioxidant reaction. HSA also exhibited alkaline-pH dependent peroxidase activity to remove fatty acid hydroperoxide. At neutral pH, only two thiols of Cys-289 and free Cys-34 of HSA were modified by a thiol-specific modification reagent, 5-((((2-iodoacetyl)amino)ethy)amino)naphthalene-1-sulfonic acid (I14), regardless of the presence or absence of dithiothreitol (DTT), and the resultant antioxidant activity was not decreased, suggesting that Cys-289 and Cys-34 did not participate in the antioxidant reaction. At alkaline pH, I14 modified several additional HSA thiols in the presence, but did not in the absence of DTT. The antioxidant activity of the modified HSA was remarkably decreased to as much as 30% of the antioxidant activity given by the unmodified HSA in the absence of DTT. The HPLC pattern for tryptic peptides containing modified cysteine(s) derived from the I14-treated c-HSA (carboxyl group-modified HSA) at pH 7.0 with DTT was very similar to that of the I14-modified HSA at pH 8.0 with DTT. Taken together, these results suggest that activation of thiol-dependent antioxidant activity of HSA at alkaline pH is due to the conformational change favorable for the functional cysteine(s)-mediated catalysis.  相似文献   

10.
Mycoplasma fermentans is an extracellular microorganism capable of adhering to the surface of host cells. It has been recently shown that plasminogen binding to M. fermentans in the presence of the urokinase-type plasminogen activator promotes the invasion of host cells by this organism. In this report, we show that viable mycoplasmas persist within the infected HeLa cells for prolonged periods of time despite the expectation that within host cells the organism may be exposed to oxidative stress. Using cyclic voltammetry and luminol-enhanced chemiluminescence assays, we detected a potent reducing antioxidant activity in M. fermentans. The reducing antioxidant activity was heat stable, not affected by proteolysis and was almost totally lost upon dialysis suggesting that the activity is due to a nonproteinaceus low molecular weight antioxidant. This antioxidant was partially purified by Bio-Gel column chromatography followed by high-pressure liquid chromatographic analysis. We suggest that the high reducing antioxidant capacity in M. fermentans is a principal defense mechanism playing a major role in the battle of the organism against oxidative stress within the host cells.  相似文献   

11.
Ubiquinones and tocopherols (vitamin E) are intrinsic lipid components which have a stabilizing function in many membranes attributed to their antioxidant activity. The antioxidant effects of tocopherols are due to direct radical scavenging. Although ubiquinones also exert antioxidant properties the specific molecular mechanisms of their antioxidant activity may be due to: (i) direct reaction with lipid radicals or (ii) interaction with chromanoxyl radicals resulting in regeneration of vitamin E. Lipid peroxidation results have now shown that tocopherols are much stronger membrane antioxidants than naturally occurring ubiquinols (ubiquinones). Thus direct radical scavenging effects of ubiquinols (ubiquinones) might be negligible in the presence of comparable or higher concentrations of tocopherols. In support of this our ESR findings show that ubiquinones synergistically enhance enzymic NADH- and NADPH-dependent recycling of tocopherols by electron transport in mitochondria and microsomes. If ubiquinols were direct radical scavengers their consumption would be expected. Further proving our conclusion HPLC measurements demonstrated that ubiquinone-dependent sparing of tocopherols was not accompanied by ubiquinone consumption.  相似文献   

12.
Cashew apple is a tropical pseudofruit consumed as juice due to its excellent nutritional and sensory properties. In spite of being well known for its important antioxidant properties, the cashew apple has not been thoroughly investigated for its therapeutic potential. Thereby, this study evaluated the antioxidant capacity, anti-inflammatory, and wound-healing activities of cashew apple juice. Juices from ripe and immature cashew apples were analyzed for antioxidant, anti-inflammatory, and wound-healing properties. Those were evaluated in murine models of xylene-induced ear edema and wound excision. Swiss mice were treated with cashew juice by gavage. Edema thickness was measured and skin lesions were analyzed by planimetry and histology. Both antioxidant content and total antioxidant activity were higher in ripe cashew apple juice (RCAJ) than in unripe cashew apple juice (UNCAJ). The UNCAJ presented the main anti-inflammatory activity by a significant inhibition of ear edema (66.5%) when compared to RCAJ (10%). Moreover, UNCAJ also showed the best result for wound contraction (86.31%) compared to RCAJ (67.54%). Despite of higher antioxidant capacity, RCAJ did not promote better anti-inflammatory, and healing responses, which may be explained by the fact that treatment increased antioxidants level leading to a redox “imbalance” turning down the inflammatory response modulation exerted by reactive oxygen species (ROS). The results suggest that UNCAJ presents a greater therapeutic activity due to a synergistic effect of its phytochemical components, which improve the immunological mechanisms as well as an optimal balance between ROS and antioxidants leading to a better wound healing process.  相似文献   

13.
Russian Journal of Bioorganic Chemistry - The urgency of developing the technology for obtaining the dihydroquercetin-zinc complex is due to the high antiradical, antioxidant, antiviral activity...  相似文献   

14.
Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.  相似文献   

15.
The cerebral free radical oxidation processes on 40 Wistar rats-males were studied by evaluation of thiobarbituric-active products of lipid peroxidation level, superoxide dismutase and glutathione peroxidase activity in sensomotor cortex, hypothalamus and brain stem. Was found that differential stability of rats to motor activities during single intensive physical loading is due by reactivity of free radicals oxidation, associated with decrease of cerebral antioxidant enzymes activity. Long term intensive physical loading may accompanied by reducing of reserve possibilities of antioxidant enzymes an cerebral structures, what possible play potential role in pathogenetic mechanisms of osteoarthritis.  相似文献   

16.
Food constituents are the major source of various phytochemicals and micronutrients. The importance of these dietary constituents has been stressed in recent years due to their antioxidant and anticarcinogenic potential. Spices used in Indian foods such as cloves (Syzygium aromaticum), licorice (Glycyrrhiza glabra), mace (aril of Myristica fragans), and greater cardamom (Amomum subulatum) were tested for their antioxidant properties in vitro. The metal chelating activity, bleomycin dependent DNA oxidation, diphenyl-p-picryl hydrazyl (DPPH) radical scavenging activity and the ferric reducing /antioxidant power (FRAP) were measured in rat liver homogenate in presence of spices. Metal chelating activity was significantly high with all the spice extracts except mace. The spices due to higher reducing potential (in presence of bleomycin-FeCl_{3}) showed increased DNA oxidation. Cloves showed the highest DPPH radical scavenging activity, followed by licorice, mace and cardamom. FRAP values for cloves were also the highest, while other spices showed comparatively lesser FRAP values. The results show that the spices tested are strong antioxidants and may have beneficial effects on human health.  相似文献   

17.
Althaea officinalis (Malvaceae) is a well-known plant that is widely distributed throughout the world. Aqueous and hydroalcoholic extracts from A. officinalis root are used mainly because of their antitussive and expectorant activity. It is well known that these activities are based on the polysaccharide composition, but little is known about the possible antioxidant activity of root extract. The present study evaluated antioxidant activity of root extracts prepared with different extraction solvents applying ABTS·+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), hypochlorous acid scavenging assay and iron-induced lipid peroxidation. The results showed that the extract prepared with water as extraction solvent did not possess antioxidant activity, whereas the extracts obtained using ethanol:water as extraction agent showed well pronounced antioxidant activity. In particular, the extracts obtained at low concentration of ethanol in the mixed solvent (50:50 and 70:30, v/v) showed higher scavenging activity for ABTS·+ radicals and hypochlorite ions than the extract obtained with the higher ethanol concentration (90:10, v/v). These results correlated very well with phenolic and flavonoid content of the extracts. The extracts did not show cytotoxic effect on human BV-173 leukemic cells but may have immunomodulating effects due to their antioxidant properties.  相似文献   

18.
Structure-antioxidant activity relationships of flavonoids and phenolic acids   总被引:53,自引:0,他引:53  
The recent explosion of interest in the bioactivity of the the flavonoids of higher plants is due, at least in part, to the potential health benefits of these polyphenolic components of major dietary constituents. This review article discusses the biological properties of the flavonoids and focuses on the relationship between their antioxidant activity, as hydrogen donating free radical scavengers, and their chemical structures. This culminates in a proposed hierarchy of antioxidant activity in the aqueous phase. The cumulative findings concerning structure-antioxidant activity relationships in the lipophilic phase derive from studies on fatty acids, liposomes, and low-density lipoproteins; the factors underlying the influence of the different classes of polyphenols in enhancing their resistance to oxidation are discussed and support the contention that the partition coefficients of the flavonoids as well as their rates of reaction with the relevant radicals define the antioxidant activities in the lipophilic phase.  相似文献   

19.
Tea polyphenols have strong in vitro antioxidant activity. Due to their limited bioavailability, however, their contribution to in vivo antioxidant activity may depend on the form of administration. A human intervention study was performed to evaluate the bioavailability and antioxidant capacity of (-)-epigallocatechin-3-gallate (EGCG) administered as a single large dose in the form of either purified EGCG or as green tea extract (Polyphenon E). Plasma concentrations of tea polyphenols were determined by high-performance liquid chromatography (HPLC) analysis combined with coulometric array electrochemical detection (ECD). We found no differences in plasma EGCG concentrations and trolox equivalents determined by the trolox equivalent antioxidant capacity assay after administration of either form of EGCG. However, we found that the plasma antioxidant activity was significantly affected by changes in the plasma urate concentration, which may have interfered with the effect of tea polyphenols on the antioxidant activity. In addition, lymphocyte 8-hydroxydeoxyguanosine to deoxyguanosine (8-OHdG/10(6)dG) ratios were determined by HPLC with ECD. The 8-OHdG/10(6)dG ratios did not change significantly during the 24 h following both EGCG interventions but correlated significantly within individuals determined during the two interventions separated by 1 week. In summary, changes in plasma uric acid due to dietary intake were significantly correlated to the plasma antioxidant activity and exerted a stronger influence on the plasma antioxidant activity compared with the EGCG intervention. In future studies of dietary effects on the plasma antioxidant capacity, changes in plasma uric acid will need to be closely monitored.  相似文献   

20.
A variety of Krebs cycle intermediaries has been shown to possess antioxidant properties in different in vivo and in vitro systems. Here we examined whether citrate, succinate, malate, oxaloacetate, fumarate and alpha-ketoglutarate could modulate malonate-induced thiobarbituric acid-reactive species (TBARS) production in rat brain homogenate. The mechanisms involved in their antioxidant activity were also determined using two analytical methods: 1) a popular spectrophotometric method (Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95, 351-358.) and a high performance liquid chromatographic (HPLC) procedure (Grotto, D., Santa Maria, L. D., Boeira, S., Valentini, J., Char?o, M. F., Moro, A. M., Nascimento, P. C., Pomblum, V. J., Garcia, S. C., 2006. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. Journal of Pharmaceutical and Biomedical Analysis 43, 619-624.). Citrate, malate, and oxaloacetate reduced both basal and malonate-induced TBARS production. Their effects were not changed by pre-treatment of rat brain homogenates at 100 degrees C for 10 min. alpha-Ketoglutarate increased basal TBARS without changing malonate-induced TBARS production in fresh and heat-treated homogenates. Succinate reduced basal--without altering malonate-induced TBARS production. Its antioxidant activity was abolished by KCN or heat treatment. Fumarate reduced malonate-induced TBARS production in fresh homogenates; however, its effect was completely abolished by heat treatment. There were minimal differences among the studied methods. Citrate, oxaloacetate, malate, alpha-ketoglutarate and malonate showed iron-chelating activity. We suggest that antioxidant properties of citrate, malate and oxaloacetate were due to their ability to cancel iron redox activity by forming inactive complexes, whereas alpha-ketoglutarate and malonate pro-oxidant activity can be due to formation of active complexes with iron. In contrast, succinate and fumarate antioxidant activity was probably due to some enzymatic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号