首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted to study physio-biochemical parameters to delineate the molecular basis of resistance against isoproturon in Phalaris minor. The reciprocal crosses of isoproturon resistant and susceptible biotypes of P. minor were made during the first year of an experiment and during the next year, these F1 hybrids with their respective parents were evaluated for physio-biochemical and growth parameters after spraying the weed @ 0.0, 0.5, 1.0 and 1.5 kg ha?1 with isoproturon at 22nd and 30th DAS. The F1s showed heterosis and the order of resistance against isoproturon in the four biotypes was R×S > R > S×R > S. This indicated that the resistance against isoproturon in P. minor is predominantly governed by cytoplasmic inheritance, but the nuclear inheritance also has some contribution.  相似文献   

2.
Isoproturon is the only herbicide that can control Phalaris minor, a competitive weed of wheat that developed resistance in 1992. Resistance against isoproturon was reported to be due to a mutation in the psbA gene that encodes the isoproturon-binding D1 protein. Previously in our laboratory, a triazole derivative of isoproturon (TDI) was synthesized and found to be active against both susceptible and resistant biotypes at 0.5 kg/ha but has shown poor specificity. In the present study, both susceptible D1((S)), resistant D1((R)) and D2 proteins of the PS-II reaction center of P. minor have been modeled and simulated, selecting the crystal structure of PS-II from Thermosynechococcus elongatus (2AXT.pdb) as template. Loop regions were refined, and the complete reaction center D1/D2 was simulated with GROMACS in lipid (1-palmitoyl-2-oleoylglycero-3-phosphoglycerol, POPG) environment along with ligands and cofactor. Both S and R models were energy minimized using steepest decent equilibrated with isotropic pressure coupling and temperature coupling using a Berendsen protocol, and subjected to 1,000 ps of MD simulation. As a result of MD simulation, the best model obtained in lipid environment had five chlorophylls, two plastoquinones, two phenophytins and a bicarbonate ion along with cofactor Fe and oxygen evolving center (OEC). The triazole derivative of isoproturon was used as lead molecule for docking. The best worked out conformation of TDI was chosen for receptor-based de novo ligand design. In silico designed molecules were screened and, as a result, only those molecules that show higher docking and binding energies in comparison to isoproturon and its triazole derivative were proposed for synthesis in order to get more potent, non-resistant and more selective TDI analogs.  相似文献   

3.
The mechanism of resistance to diquat and paraquat was investigated in a bipyridyl-herbicide-resistant biotype of Arctotheca calendula (L.) Levyns. No differences were observed in the interactions of these herbicides with Photo-system I, the active site, in thylakoids isolated from resistant and susceptible biotypes. Likewise, absorption of herbicide through the cuticle and gross translocation were identical in plants of the two biotypes. Foliar application of either 25 g ha−1 diquat or 200 g ha−1 paraquat rapidly inhibited CO2-dependent O2 evolution of leaf segments of the susceptible biotype. O2 evolution of leaf segments of the resistant biotype was less affected by these treatments. Fluorescence imaging was used to observe visually, as fluorescence quenching, the penetration of herbicide to the active site. These experiments demonstrated that diquat appears at the active site more slowly in the resistant biotype compared to the susceptible biotype. HCO3-dependent O2 evolution of thin leaf slices was less inhibited by diquat in the resistant biotype than in the susceptible biotype. The mechanism of resistance to the bipyridyl herbicides in this biotype of A. calendula is not a result of changes at the active site, decreased herbicide absorption or decreased translocation, but appears to be due to reduced herbicide penetration to the active site.  相似文献   

4.
Paraquat-resistant biotypes of the closely-related weed species Hordeum leporinum Link and H. glaucum Steud. are highly resistant to paraquat when grown during the normal winter growing season. However, when grown and treated with paraquat in summer, these biotypes are markedly less resistant to paraquat. This reduced resistance to paraquat in summer is primarily a result of increased temperature following herbicide treatment. The mechanism governing this decrease in resistance at high temperature was examined in H. leporinum. No differences were observed between susceptible and resistant biotypes in the interaction of paraquat with isolated thylakoids when assayed at 15, 25, or 35 °C. About 98 and 65% of applied paraquat was absorbed through the leaf cuticle of both biotypes at 15 and 30 °C, respectively. Following application to leaves, more herbicide was translocated in a basipetal direction in the susceptible biotype compared to the resistant biotype at 15 °C. However, at 30 °C more paraquat was translocated in a basipetal direction in the resistant biotype. Photosynthetic activity of young leaf tissue from within the leaf sheath which had not been directly exposed to paraquat was measured 24 h after treatment of plants with para. quat. This activity was inhibited in the susceptible biotype when plants were maintained at either 15 °C or 30 °C after treatment. In contrast, photosynthetic activity of such tissue of the resistant biotype was not inhibited when plants were maintained at 15 °C after treatment, but was inhibited at 30 °C. The mechanism of resistance in this biotype of H. leporinum correlates with decreased translocation of paraquat and decreased penetration to the active site. This mechanism is temperature sensitive and breaks down at higher temperatures.We are grateful to Zeneca Agrochemicals, Jealotts Hill, Berkshire, UK who provided [14C]paraquat. E.P. was supported through a Ph.D. scholarship from the Australian International Development Assistance Bureau and C.P. was the recipient of an Australian Research Council Postdoctoral Fellowship.  相似文献   

5.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

6.
Many biotypes of Lolium rigidum Gaud, (annual ryegrass) have developed resistance to herbicides; however, few have developed resistance to phenylurea herbicides. Two biotypes with different histories of herbicide selection pressure were six to eight times less sensitive to the phenylurea herbicide, chlorotoluron, than a susceptible biotype. Resistance was not due to differences in the herbicide target site as oxygen evolution by thylakoids isolated from resistant and susceptible biotypes was similarly inhibited by diuron and chlorotoluron. There was no difference in the uptake and distribution of chlorotoluron into resistant and susceptible plants. There was a twofold greater rate of chlorotoluron detoxification in resistant plants with N-demethylation being a major detoxification reaction. Resistant plants treated with a 3-h pulse of 120 M chlorotoluron recovered net carbon fixation after 42 h, half the time taken by susceptible plants. The mixed-function oxidase inhibitor 1-aminobenzotriazole (70 M) intensified the effects of chlorotoluron in resistant plants when applied in combination with the herbicide for 7 d. 1-Aminobenzotriazole also inhibited the metabolism of chlorotoluron in both resistant and susceptible plants. The cytochrome P-450 inhibitor, piperonyl butoxide piperonyl butoxide, interacted with chlorotoluron when applied to plants growing in soil. Chlorotoluron applied with reduced plant dry weight to a greater extent than chlorotoluron alone. It appears, therefore, that enhanced detoxification is the major mechanism of resistance to chlorotoluron in the resistant biotypes studied.Abbreviations ABT 1-aminobenzotriazole - VLR1 Victorian L. rigidum biotype 1 — herbicide susceptible - VLR69 Victorian L. rigidum biotype 69 — herbicide resistant - WLR2 Western Australian L. rigidum biotype 2 — herbicide resistant M.W.M.B, was supported by an Australian Postgraduate Research Award and a supplementary scholarship from the Grains Research and Development Corporation. We are very grateful to Dr. E. Ebert, Ciba Geigy, Basal, Switzerland for providing [14C]chlorotoluron and standards of chlorotoluron metabolites. We express our gratitude to Dr. John Huppatz of the CSIRO Division of Plant Industry for providing ABT. We also thank Ciba Geigy Australia for providing technical-grade chlorotoluron and formulated phenylurea herbicides.  相似文献   

7.
Target leaf spot is one of the major sorghum diseases in southern Japan and caused by a necrotrophic fungus, Bipolaris sorghicola. Sorghum resistance to target leaf spot is controlled by a single recessive gene (ds1). A high-density genetic map of the ds1 locus was constructed with simple sequence repeat markers using progeny from crosses between a sensitive variety, bmr-6, and a resistant one, SIL-05, which allowed the ds1 gene to be genetically located within a 26-kb region on the short arm of sorghum chromosome 5. The sorghum genome annotation database for BTx623, for which the whole genome sequence was recently published, indicated a candidate gene from the Leucine-Rich Repeat Receptor Kinase family in this region. The candidate protein kinase gene was expressed in susceptible plants but was not expressed or was severely reduced in resistant plants. The expression patterns of ds1 gene and the phenotype of target leaf spot resistance were clearly correlated. Genomic sequences of this region in parental varieties showed a deletion in the promoter region of SIL-05 that could cause reduction of gene expression. We also found two ds1 alleles for resistant phenotypes with a stop codon in the coding region. The results shown here strongly suggest that the loss of function or suppression of the ds1 protein kinase gene leads to resistance to target leaf spot in sorghum.  相似文献   

8.
Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05504, NBS-09711, NBS-07688, NBS-03509 and EST-SSR-04241) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.  相似文献   

9.
The mechanism of resistance to paraquat was investigated in biotypes of Hordeum glaucum Steud. and H. leporinum Link. with high levels of resistance. Inhibition of photosynthetic O2 evolution after herbicide application was used to monitor the presence of paraquat at the active site. Inhibition of photosynthetic O2 evolution after paraquat application was delayed in both resistant biotypes compared with the susceptible biotypes; however, this differential was more pronounced in the case of H. glaucum than in H. leporinum. Similar results could be obtained with the related herbicide diquat. Examination of the concentration dependence of paraquat-induced inhibition of O2 evolution showed that the resistant H. glaucum biotype was less affected by herbicide compared with the susceptible biotype 3 h after treatment at most rates. The resistant H. leporinum biotype, in contrast, was as inhibited as the susceptible biotype except at the higher rates. In all cases photosynthetic O2 evolution was dramatically inhibited 24 h after treatment. Measurement of the amount of paraquat transported to the young tissue of these plants 24 h after treatment showed 57% and 53% reductions in the amount of herbicide transported in the case of the resistant H. glaucum and H. leporinum biotypes, respectively, compared with the susceptible biotypes. This was associated with 62% and 66% decreases in photosynthetic O2 evolution of young leaves in the susceptible H. glaucum and H. leporinum biotypes, respectively, a 39% decrease in activity for the resistant H. leporinum biotype, but no change in the resistant H. glaucum biotype. Photosynthetic O2 evolution of leaf slices from resistant H. glaucum was not as inhibited by paraquat compared with the susceptible biotype; however, those of resistant and susceptible biotypes of H. leporinum were equally inhibited by paraquat. Paraquat resistance in these two biotypes appears to be a consequence of reduced movement of the herbicide in the resistant plants; however, the mechanism involved is not the same in H. glaucum as in H. leporinum.  相似文献   

10.
The indica rice cultivar, Teqing, shows a high level of resistance to rice stripe virus (RSV). It is believed that this resistance is controlled by the gene, qSTV11 TQ . For positional cloning of the resistance gene, a set of chromosome single segment substitution lines (CSSSLs) was constructed, all of which had the genetic background of the susceptible japonica cultivar, Lemont, with different single substituted segments of Teqing on chromosome 11. By identifying the resistance of the CSSSLs-2006 in a field within a heavily diseased area, the resistance gene qSTV11 TQ was mapped between the markers Indel7 and RM229. Furthermore, in that region, six new markers were developed and 52 subregion CSSSLs (CSSSLs-2007) were constructed. The natural infection experiment was conducted again at different sites, with two replicates used in each site in order to identify the resistance phenotypes of the CSSSLs-2007 and resistant/susceptible controls in 2007. Through the results of 2007, qSTV11 TQ was localized in a region defined by the markers, CAPs1 and Indel4. In order to further confirm the position of qSTV11 TQ , another set of subregion CSSSLs (CSSSLs-2009) was constructed. Finally, qSTV11 TQ was localized to a 55.7 kb region containing nine annotated genes according to the genome sequence of japonica Nipponbare. The relationship between qSTV11 TQ and Stvb-i (Hayano-Saito et al. in Theor Appl Genet 101:59–63, 2000) and the reliability of the markers used on both sides of qSTV11 TQ for marker-assisted breeding of resistance to rice stripe disease are discussed.  相似文献   

11.
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus.  相似文献   

12.
Kochia scoparia biotypes that are susceptible or resistant to the auxinic herbicide dicamba were used to characterize expression levels of choline monooxygenase (CMO) and glycine betaine accumulation in response to salt stress and herbicide treatment. A 1180-bp cDNA was isolated using differential display and 3 RACE with a deduced amino acid sequence that was more than 90% similar to the carboxy terminal 290 residues of CMOs from four related plant species. Salt stress led to a substantial increase in CMO mRNA and enzyme levels in K. scoparia biotypes, and the accumulation of up to 80 mol g–1 fresh weight glycine betaine. In contrast, dicamba treatment was followed by the rapid attenuation of CMO message and protein levels, with a recovery of expression in the resistant but not the susceptible biotype. CMO mRNA and enzyme levels similarly declined, and recovered in the resistant biotype, after dicamba treatment of plants that were previously salt stressed for 4 days. The opposing effects of these two stresses may represent a regulatory scheme in which competition for the substrate choline leads to a repression of glycine betaine biosynthesis to make sufficient choline available for auxin-mediated growth processes.  相似文献   

13.
The spectrum of herbicide resistance was determined in an annual ryegrass (Lolium rigidum Gaud.) biotype (SLR 3) that had been exposed to the grass herbicide sethoxydim, an inhibitor of the plastidic enzyme acetylcoenzyme A carboxylase (ACCase, EC 6.4.1.2), for three consecutive years. This biotype has an 18-fold resistance to sethoxydim and enhanced resistance to other cyclohexanedione herbicides compared with a susceptible biotype (VLR 1). The resistant biotype also has a 47- to >300-fold cross-resistance to the aryloxyphenoxypropanoate herbicides which share ACCase as a target site. No resistance is evident to herbicide with a target site different from ACCase. The absorption of [4-14C]sethoxydim, the rate of metabolic degradation and the nature of the herbicide metabolites are similar in the resistant and susceptible biotypes. While the total activity of the herbicide target enzyme ACCase is similar in extracts from the two biotypes, the kinetics of herbicide inhibition differ. The concentrations of sethoxydim and tralkoxydim required to inhibit the activity of ACCase by 50% are 7.8 and >9.5 times higher, respectively, in the resistant biotype. The activity of ACCase from the resistant biotype was also less sensitive to aryloxyphenoxypropanode herbicides than the susceptible biotype. The spectrum of resistance at the whole-plant level is correlated with resistance at the ACCase level and confirms that a less sensitive form of the target enzyme endows resistance in biotype SLR 3.Abbreviations ACCase acetyl-coenzyme A carboxylase - AOPP aryloxyphenoxypropanoate - CHD cyclohexanedione - GR50 dose giving 50% reduction of growth - IG50 dose giving 50% reduction of germination - LD50 lethal dose 50 This work was partially supported by The Grains Research and Development Corporation of Australia through a grant to Dr. R. Knight, Department of Plant Science, Waite Agricultural Research Institute. The encouragement and generous support of Dr. R. Knight is gratefully acknowledged.  相似文献   

14.
The powdery mildew disease affects several crop species and is also one of the major threats for pea (Pisum sativum L.) cultivation all over the world. The recessive gene er1, first described over 60 years ago, is well known in pea breeding, as it still maintains its efficiency as a powdery mildew resistance source. Genetic and phytopathological features of er1 resistance are similar to those of barley, Arabidopsis, and tomato mlo powdery mildew resistance, which is caused by the loss of function of specific members of the MLO gene family. Here, we describe the obtainment of a novel er1 resistant line by experimental mutagenesis with the alkylating agent diethyl sulfate. This line was found to carry a single nucleotide polymorphism in the PsMLO1 gene sequence, predicted to result in premature termination of translation and a non-functional protein. A cleaved amplified polymorphic sequence (CAPS) marker was developed on the mutation site and shown to be fully co-segregating with resistance in F2 individuals. Sequencing of PsMLO1 from three powdery mildew resistant cultivars also revealed the presence of loss-of-function mutations. Taken together, results reported in this study strongly indicate the identity between er1 and mlo resistances and are expected to be of great breeding importance for the development of resistant cultivars via marker-assisted selection.  相似文献   

15.
Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different biotypes. The objectives of our study were to investigate if feeding behaviour and performance of two biotypes of the lettuce aphid Nasonovia ribisnigri are affected by (1) feeding by the other biotype and (2) feeding by the green peach aphid Myzus persicae or the potato aphid Macrosiphum euphorbiae. Additionally the effect of feeding in a group was studied. All experiments were performed on both a resistant and an isogenic susceptible lettuce cultivar. Feeding or probing by conspecific or heterospecific aphids had different effects on Nasonovia ribisnigri biotypes. Aphids were only slightly affected by feeding or probing of the same biotype on both susceptible and resistant lettuce. N. ribisnigri virulent biotype Nr:1 suppressed the resistance against Nr:0 in the resistant cultivar. In contrast, defence was induced by Nr:1 against Nr:0 in susceptible lettuce. Co-infestation by M. euphorbiae and M. persicae had minor effects on Nr:0. Defence against Nr:1 was induced on both susceptible lettuce and resistant lettuce by Nr:0 and M. euphorbiae. Additionally, M. persicae induced defence in resistant lettuce against Nr:1. Effectors in the saliva of Nr:1 aphids are likely responsible for the defence suppression in lettuce. Identification of these effectors could lead to a better understanding of the mechanism of virulence in N. ribisnigri.  相似文献   

16.
Stowe AE  Holt JS 《Plant physiology》1988,87(1):183-189
The relationship of triazine resistance to decreased plant productivity was investigated in Senecio vulgaris L. F1 reciprocal hybrids were developed from pure-breeding susceptible (S) and resistant (R) lines. The four biotypes (S, S × R, R, R × S) were compared in terms of atrazine response, electron transport, carbon fixation, and biomass production. Atrazine response, carbon fixation rate, and PSII and whole-chain electron transport rates of hybrids were nearly identical to those of their respective maternal parents. Significant differences occurred between the two susceptible (S, S × R) and two resistant (R, R × S) biotypes in atrazine response (I50), carbon fixation rate, and PSII and whole-chain electron transport rates; PSI rates were identical in all four biotypes. Coupled and uncoupled, whole-chain electron transport rates of thylakoids of the two susceptible biotypes were approximately 50% greater than those of the two resistant biotypes at photon flux densities greater than 215 micromoles per square meter per second. Carbon exchange rates of the two susceptible biotypes were 23% greater than those of the two resistant biotypes. Hybrid biotypes (S × R, R × S) were not identical to their maternal parents in biomass production. The S, S × R, and R × S plants all achieved greater biomass than R plants. These results suggest that while the resistance mutation influences thylakoid performance, reduced productivity of triazine-resistant plants cannot be ascribed solely to decreases in electron transport or carbon assimilation rates brought about by the altered binding protein. Since the F1 hybrids differed from their maternal parents only in nuclear genes, it appears that the detrimental effects of the triazine resistance mutation on plant growth may be attenuated by interactions of the plastid and nuclear genomes.  相似文献   

17.
Wang Y  Li H  Si Y  Zhang H  Guo H  Miao X 《Planta》2012,235(4):829-840
Rathu Heenati (RHT) is a Sri Lankan rice cultivar that carries a brown planthopper (BPH) resistance gene, Bph3, and shows broad-spectrum resistance to all four biotypes of BPH. The BPH-resistance loci in RHT has been studied extensively and assigned to four different rice chromosomes (3, 4, 6, and 10) by different research groups, but the gene has not been cloned previously. An Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the potential resistance-related genes on the four chromosomes by comparative analysis of the differentially expressed genes between resistant and susceptible rice cultivars exposed to BPH attack. The microarray results showed that at least 17 genes related to induced resistance and at least 193 genes related to constitutive resistance in RHT. On chromosome 3, the AOC4 was hypothesized to be the most important candidate gene. On chromosome 6, no valuable candidate resistance gene was identified in the Bph3 localization region. In the three Quantitative trait locus regions of chromosomes 3, 4, and 10, the numbers of constitutive and induced resistance-related genes found were 17, 26, and 12, respectively. The major probe on chromosome 10 represents a constitutive expression gene with a very high absolute fold-change of 2,588.82. The microarray analysis indicated that BPH resistance in RHT is probably controlled by a series of resistance-related genes. This study provides valuable information for cloning, functional analysis and marker-assisted breeding of these BPH resistance genes.  相似文献   

18.
Summary We report here the first molecular characterization of maternally inherited atrazine resistance in a monocot. As has been found in dicots, resistance in the grass Poa annua is correlated with a decrease in the ability of herbicides to bind to thylakoids and with an alteration in the gene for the D1 protein of photosystem II which would result in a change from a serine to an alanine residue at position 264 of the protein. Azidoatrazine, a photoaffinity-labelled analogue of atrazine, binds to the putative product of this gene in sensitive but not resistant biotypes of P. annua. The wheat gene and protein are shown to resemble those of the atrazine-sensitive P. annua biotype.Now Institute of Plant Science Research (Cambridge Laboratory)  相似文献   

19.
Southern corn rust, caused by Puccinia polysora Underw., has destructive potential on the susceptible host. In this study, the resistance inheritance was investigated in an F 2 and its F 2:3 populations derived from a cross from two inbred lines W2D (resistant) and W222 (susceptible). The 3:1 ratio of resistant to susceptible plants indicated that the resistance is controlled by one dominant gene (named as RppD). The gene RppD was located by means of the F 2 population. Total of 11 markers, including five SSR markers, five sequence-tagged site markers and one cleaved-amplified polymorphic sequence (CAPS) marker, were identified to narrow the gene RppD down to a smaller interval. The closest markers flanking RppD were SSR marker umc1291 and CAPS marker CAPS858, with genetic distances of 2.9 and 0.8 cM, respectively. Moreover, RppD might be a novel Rpp resistance gene or haplotype differing from RppQ and RppP25 according to an allelism test among the three crosses W2D × Qi319, W2D × P25 and Qi319 × P25. As a result, RppD haplotype might be helpful to maize germplasm enhancement and disease-resistant breeding.  相似文献   

20.
The translation initiation factor 4E (eIF4E) has been implicated in naturally occurring resistance to Potato virus Y (PVY) determined by the pvr2 locus in pepper (Capsicum annuum). Here, the molecular basis of the recessive resistance to PVY and Tobacco etch virus (TEV) controlled by the pot-1 locus in tomato (Lycopersicon esculentum; now Solanum lycopersicum) was investigated. On the basis of genetic mapping data that indicated that pot-1 and pvr2 are located in syntenic regions of the tomato and pepper genomes, the possible involvement of eIF4E in pot-1-mediated resistance was assessed. Genetic mapping of members of the eIF4E multigenic family in tomato introgression lines revealed that an eIF4E locus indeed maps in the same genomic region as pot-1. By comparing eIF4E coding sequences between resistant and susceptible Lycopersicon genotypes, a small number of polymorphisms that co-segregate with the pot-1 locus were identified, suggesting that this gene could be involved in resistance to potyviruses. Functional complementation experiments using Potato virus X-mediated transient expression of eIF4E from a susceptible genotype in a resistant pepper genotype confirmed that a small number of amino acid substitutions in the eIF4E protein indeed account for resistance/susceptibility to both the PVY and TEV, and consequently that pot-1 and pvr2 are orthologues. Taken together, these results support the role of this eIF4E gene as a key component of recessive resistance to potyviruses, and validate the comparative genomic approach for the molecular characterization of recessive resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号