首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The refuge strategy is designed to delay evolution of pest resistance to transgenic crops producing Bacillus thuringiensis Berliner (Bt) toxins. Movement of insects between Bt crops and refuges of non-Bt crops is essential for the refuge strategy because it increases chances that resistant adults mate with susceptible adults from refuges. Conclusions about optimal levels of movement for delaying resistance are not consistent among previous modeling studies. To clarify the effects of movement on resistance evolution, we analyzed simulations of a spatially explicit model based partly on the interaction of pink bollworm, Pectinophora gossypiella (Saunders), with Bt cotton. We examined resistance evolution as a function of insect movement under 12 sets of assumptions about the relative abundance of Bt cotton (50 and 75%), temporal distribution of Bt cotton and refuge fields (fixed, partial rotation, and full rotation), and spatial distribution of fields (random and uniform). The results show that interactions among the relative abundance and distribution of refuges and Bt cotton fields can alter the effects of movement on resistance evolution. The results also suggest that differences in conclusions among previous studies can be explained by differences in assumptions about the relative abundance and distribution of refuges and Bt crop fields. With fixed field locations and all Bt cotton fields adjacent to at least one refuge, resistance evolved slowest with low movement. However, low movement and fixed field locations favored rapid resistance evolution when some Bt crop fields were isolated from refuges. When refuges and Bt cotton fields were rotated to the opposite crop type each year, resistance evolved fastest with low movement. Nonrecessive inheritance of resistance caused rapid resistanceevolution regardless of movement rate. Confirming previous reports, results described here show that resistance can be delayed effectively by fixing field locations and distributing refuges uniformly to ensure that Bt crop fields are not isolated from refuges. However, rotating fields provided better insect control and reduced the need for insecticide sprays.  相似文献   

2.
Refuges of non-Bacillus thuringiensis (Bt) cotton, Gossypium hirsutum L., are used to delay Bt resistance in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), a pest that eats cotton seeds. Contamination of refuges by Bt transgenes could reduce the efficacy of this strategy. Previously, three types of contamination were identified in refuges: 1) homozygous Bt cotton plants, with 100% of their seeds producing the Bt toxin Cry1Ac; 2) hemizygous Bt plants with 70-80% of their seeds producing Cry1Ac; and 3) non-Bt plants that outcrossed with Bt plants, resulting in bolls with Cry1Ac in 12-17% of their seeds. Here, we used laboratory bioassays to examine the effects of Bt contamination on feeding behavior and survival of pink bollworm that were resistant (rr), susceptible (ss), or heterozygous for resistance (rs) to Cry1Ac. In choice tests, rr and rs larvae did not differ from ss in preference for non-Bt versus Bt seeds. Survival of rr and rs also did not differ from ss on artificial outcrossed bolls (a mixture of 20% Bt and 80% non-Bt cotton seeds). On artificial hemizygous Bt bolls (70% Bt seeds) and homozygous Bt bolls (100% Bt seeds), rr had higher survival than ss, although rs and ss did not differ. In a simulation model, levels of refuge contamination observed in the field had negligible effects on resistance evolution in pink bollworm. However, in hypothetical simulations where contamination conferred a selective advantage to rs over ss individuals in refuges, resistance evolution was accelerated.  相似文献   

3.
The high-dose refuge resistance management strategy is the main approach used to delay resistance in targeted pests to Bacillus thuringiensis (Bt) toxins in transgenic crops. We used an F2 screen to test a critical assumption of the high-dose refuge strategy, which is that resistance allele (R) frequencies are initially rare (<10(-3)) in Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) from the southern Corn Belt. We expanded the methodological scope of the F2 screen so that both males and females may be used to initiate a screen and determined how the results from both sexes may be combined. In total, 62 female and 131 male O. nubilalis lines from Kansas and 39 female and four male lines from Texas were screened. No major resistance alleles were found and estimated R frequency for the southern Corn Belt was updated to between 0 and 0.0044 with 95% credibility. The experiment-wise detection probability was 98.7%. These results suggest the frequency of resistance alleles is low enough that the high-dose refuge resistance management strategy may be effective for delaying resistance evolution in O. nubilalis to Bt corn in the southern Corn Belt.  相似文献   

4.
转基因抗虫棉花和玉米自1996年商业化种植以来,已取得显著的经济、生态和社会效益。与其相关的生态安全性,特别是其对非靶标生物的影响及靶标害虫的抗性监测和治理已成为人们普遍关注的话题。本文在大量室内和田间评价工作的基础上,系统综述了国内外研究在该领域内取得的进展。结果表明: 由于Bt棉田和玉米田杀虫剂用量的减少,某些对Bt杀虫蛋白不敏感的非靶标植食害虫种群有上升的趋势; 现阶段生产上推广种植的Bt棉花和玉米花粉对家蚕、柞蚕和蜜蜂等经济昆虫以及帝王斑蝶是安全的。杀虫剂用量的减少,降低了对天敌的杀伤力,Bt田中捕食性天敌的种类和数量均显著高于常规施药田; 但Bt田内靶标害虫数量的减少和质量的降低,在一定程度上影响了寄生性天敌的种类和数量。Bt棉花和玉米的大面积种植对农田生态系统节肢动物群落结构无明显不利影响。靶标害虫田间抗性监测结果表明,无论在以大农场单一种植经营为主的发达国家如美国或澳大利亚,还是在以小农经营为主的多种寄主作物小规模交叉混合种植模式的发展中国家如中国或印度,田间并未出现10年前人们所关注和预测的靶标害虫种群抗性上升问题。究其原因,可能与发达国家严格执行了预防性的抗性治理对策及发展中国家独特的作物种植模式有关。尽管目前在田间尚未发现害虫对Bt作物产生抗性,但应用更多年份之后,害虫对Bt作物的抗性就很可能不是“是否”发生问题,而是“何时”发生的问题。因此,今后的研究重点应放在Bt棉花和玉米长期、大面积种植后,其对非靶标生物及靶标害虫抗性发展影响的长期生态效应上。  相似文献   

5.
Field tests on managing resistance to Bt-engineered plants   总被引:9,自引:0,他引:9  
Several important crops have been engineered to express toxins of Bacillus thuringiensis (Bt) for insect control. In 1999, US farmers planted nearly 8 million hectares (nearly 20 million acres) of transgenic Bt crops approved by the EPA. Bt-transgenic plants can greatly reduce the use of broader spectrum insecticides, but insect resistance may hinder this technology. Present resistance management strategies rely on a "refuge" composed of non-Bt plants to conserve susceptible alleles. We have used Bt-transgenic broccoli plants and the diamondback moth as a model system to examine resistance management strategies. The higher number of larvae on refuge plants in our field tests indicate that a "separate refuge" will be more effective at conserving susceptible larvae than a "mixed refuge" and would thereby reduce the number of homozygous resistant (RR) offspring. Our field tests also examined the strategy of spraying the refuge to prevent economic loss to the crop while maintaining susceptible alleles in the population. Results indicate that great care must be taken to ensure that refuges, particularly those sprayed with efficacious insecticides, produce adequate numbers of susceptible alleles. Each insect/Bt crop system may have unique management requirements because of the biology of the insect, but our studies validate the need for a refuge. As we learn more about how to refine our present resistance management strategies, it is important to also develop the next generation of technology and implementation strategies.  相似文献   

6.
Farmers, industry, governments and environmental groups agree that it would be useful to manage transgenic crops producing insecticidal proteins to delay the evolution of resistance in target pests. The main strategy proposed for delaying resistance to Bacillus thuringiensis ( Bt) toxins in transgenic crops is the high-dose/refuge strategy. This strategy is based on the unverified assumption that resistance alleles are initially rare (<10(-3)). We used an F(2) screen on >1,200 isofemale lines of Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) collected in France and the US corn belt during 1999-2001. In none of the isofemale lines did we detect alleles conferring resistance to Bt maize producing the Cry1Ab toxin. A Bayesian analysis of the data indicates that the frequency of resistance alleles in France was <9.20 x 10(-4) with 95% probability, and a detection probability of >80%. In the northern US corn belt, the frequency of resistance to Bt maize was <4.23 x 10(-4) with 95% probability, and a detection probability of >90%. Only 95 lines have been screened from the southern US corn belt, so these data are still inconclusive. These results suggest that resistance is probably rare enough in France and the northern US corn belt for the high-dose plus refuge strategy to delay resistance to Bt maize.  相似文献   

7.
华北地区棉铃虫对转Bt基因抗虫棉抗性适应的模拟模型   总被引:2,自引:3,他引:2  
通过对华北地区耕作制度和生态系统的了解,在充分考虑种群遗传学、生物学和人为操纵因子等三大因素的基础上,建立了一个预测棉铃虫对转Bt基因抗虫棉抗性适应的模拟模型。在华北地区典型的耕作制度下,如果所有棉田均为Bt棉,则Bt棉的预期寿命为7年;如果只有春播棉为Bt棉(约占棉田总面积的70%),则其寿命为10年。模型的灵敏度分析表明, Bt棉的使用寿命随抗性基因的显性度、初始抗性频率、Bt棉所占比例等因素的增长而迅速缩短。当Bt棉表达的杀虫蛋白量恰好全部杀死敏感基因型(GSGS)个体时,Bt棉的预期寿命最短。由于国外采用的“高剂量/庇护所”抗性治理策略不适用于棉铃虫及华北棉区的耕作制度,我国需要加强对其它抗性治理措施(如转双基因抗虫棉)的研究与应用。  相似文献   

8.
Insect resistance to Bt crops: evidence versus theory   总被引:7,自引:0,他引:7  
Evolution of insect resistance threatens the continued success of transgenic crops producing Bacillus thuringiensis (Bt) toxins that kill pests. The approach used most widely to delay insect resistance to Bt crops is the refuge strategy, which requires refuges of host plants without Bt toxins near Bt crops to promote survival of susceptible pests. However, large-scale tests of the refuge strategy have been problematic. Analysis of more than a decade of global monitoring data reveals that the frequency of resistance alleles has increased substantially in some field populations of Helicoverpa zea, but not in five other major pests in Australia, China, Spain and the United States. The resistance of H. zea to Bt toxin Cry1Ac in transgenic cotton has not caused widespread crop failures, in part because other tactics augment control of this pest. The field outcomes documented with monitoring data are consistent with the theory underlying the refuge strategy, suggesting that refuges have helped to delay resistance.  相似文献   

9.
We constructed a reaction-diffusion model of the development of resistance to transgenic insecticidal Bt crops in pest populations. Kostitzin’s demo-genetic model describes local interactions between three competing pest genotypes with alleles conferring resistance or susceptibility to transgenic plants, the spatial spread of insects being modelled by diffusion. This new approach makes it possible to combine a spatial demographic model of population dynamics with classical genetic theory. We used this model to examine the effects of pest dispersal and of the size and shape of the refuge on the efficiency of the “high-dose/refuge” strategy, which was designed to prevent the development of resistance in populations of insect pests, such as the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera, Crambidae). We found that, with realistic combinations of refuge size and pest dispersal, the development of resistance could be considerably delayed. With a small to medium-sized farming area, contiguous refuge plots are more efficient than a larger number of smaller refuge patches. We also show that the formal coupling of classical Fisher–Haldane–Wright population genetics equations with diffusion terms inaccurately describes the development of resistance in a spatially heterogeneous pest population, notably overestimating the speed with which Bt resistance is selected in populations of pests targeted by Bt crops.  相似文献   

10.
Transgenic insect-resistant crops that express toxins from Bacillus thuringiensis (Bt) offer significant advantages to pest management, but are at risk of losing these advantages to the evolution of resistance in the targeted insect pests. All commercially available cultivars of these crops carry only a single Bt gene, and are particularly at risk where the targeted insect pests are not highly sensitive to the Bt toxin used. Under such circumstances, the most prudent method of avoiding resistance is to ensure that a large proportion of the pest population develops on non-transgenic ''refuge'' hosts, generally of the crop itself. This has generated recommendations that 20% or more of the cotton and maize in any given area should be non-transgenic. This may be costly in terms of yields and may encourage further reliance on and resistance to pesticides. The use of two or more toxins in the same variety (pyramiding) can reduce the amount of refuge required to delay resistance for an extended period. Cross-resistance among the toxins appears to have been overestimated as a potential risk to the use of pyramids (and pesticide mixtures) because cross-resistance is at least as important when toxicants are used independently. Far more critical is that there should be nearly 100% mortality of susceptible insects on the transgenic crops. The past failures of pesticide mixtures to manage resistance provide important lessons for the most efficacious deployment of multiple toxins in transgenic crops.  相似文献   

11.
The evolution of resistance in insect pests will imperil the efficiency of transgenic insect-resistant crops. The currently advised strategy to delay resistance evolution is to plant non-toxic crops (refuges) in close proximity to plants engineered to express the toxic protein of the bacterium Bacillus thuringiensis (Bt). We seek answers to the question of how to induce growers to plant non-toxic crops. A first strategy, applied in the United States, is to require Bt growers to plant non-Bt refuges and control their compliance with requirements. We suggest that an alternative strategy is to make Bt seed more expensive by instituting a user fee, and we compare both strategies by integrating economic processes into a spatially explicit, population genetics model. Our results indicate that although both strategies may allow the sustainable management of the common pool of Bt-susceptibility alleles in pest populations, for the European corn borer (Ostrinia nubilalis) one of the most serious pests in the US corn belt, the fee strategy is less efficient than refuge requirements.  相似文献   

12.
The 'high-dose-refuge' (HDR) strategy is widely recommended by the biotechnology industry and regulatory authorities to delay pest adaptation to transgenic crops that produce Bacillus thuringiensis (Bt) toxins. This involves cultivating nontoxic plants (refuges) in close proximity to crops producing a high dose of Bt toxin. The principal cost associated with this strategy is due to yield losses suffered by farmers growing unprotected, refuge plants. Using a population genetic model of selection in a spatially heterogeneous environment, we show the existence of an optimal spatial configuration of refuges that could prevent the evolution of resistance whilst reducing the use of costly refuges. In particular, the sustainable control of pests is achievable with the use of more aggregated distributions of nontransgenic plants and transgenic plants producing lower doses of toxin. The HDR strategy is thus suboptimal within the context of sustainable agricultural development.  相似文献   

13.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

14.
Bacillus thuringiensis (Bt) transgenic cotton, Gossypium hirsutum L., kills several economically important pests, reducing injury and increasing yields. Refuges of non-Bt cotton are currently planted with Bt cotton in different designs to slow pest resistance evolution. To compare the effects of differences in Bt/non-Bt plant heterogeneity found in different refuge designs on square (flower bud) damage, abscissions, sap-feeding herbivore densities, and yield in cotton, four types of 24-row cotton plots were planted in 2001 and 2002: 1) seed mixtures of Bt and non-Bt varieties, 2) 12-row strips of Bt and non-Bt, 3) solid Bt, and 4) solid non-Bt. For both years cotton bollworm, Helicoverpa zea (Boddie), damage was less in solid Bt plots than strips and mixtures and all were less than solid non-Bt plots. Cotton fleahopper, Pseudatomoscelis seriatus (Reuter), damage was affected by refuge, but only in 2002 when damage was greater in solid Bt plots than all other plots and greater in strips than solid non-Bt plots. Abscissions were least in solid non-Bt plots, and less in mixtures and strips than solid Bt plots. In 2001, western flower thrips, Frankliniella occidentalis (Pergande), density was greatest in mixtures, whereas sweetpotato whitefly, Bemisia tabaci (Gennadius), was greatest in solid Bt plots, and greater in mixtures than solid non-Bt plots. Yield also was affected by refuge, it was greater for solid Bt plots than for solid non-Bt plots and mixtures in 2001, but the reverse was true in 2002.  相似文献   

15.
The efficacy of nontransgenic sweet corn, Zea mays L., hybrids cross-pollinated by Bacillus thuringiensis (Bt) sweet corn hybrids expressing Cry1Ab toxin was evaluated in both field and laboratory studies in Minnesota in 2000. Non-Bt and Bt hybrids (maternal plants) were cross-pollinated with pollen from both non-Bt and Bt hybrids (paternal plants) to create four crosses. Subsequent crosses were evaluated for efficacy in the field against European corn borer, Ostrinia nubilalis (Hübner), and corn earworm, Helicoverpa zea (Boddie), and in laboratory bioassays against O. nubilalis. Field studies indicated that crosses with maternal Bt plants led to low levels of survival for both O. nubilalis and H. zea compared with the non-Bt x non-Bt cross. However, the cross between non-Bt ears and Bt pollen led to survival rates of 43 and 63% for O. nubilalis and H. zea larvae, respectively. This intermediate level of survival also was reflected in the number of kernels damaged. Laboratory bioassays for O. nubilalis, further confirmed field results with larval survival on kernels from the cross between non-Bt ears and Bt pollen reaching 60% compared with non-Bt crossed with non-Bt. These results suggest that non-Bt refuge plants, when planted in proximity to Bt plants, and cross-pollinated, can result in sublethal exposure of O. nubilalis and H. zea larvae to Bt and may undermine the high-dose/refuge resistance management strategy for corn hybrids expressing Cry1Ab.  相似文献   

16.
P Wan  Y Huang  BE Tabashnik  M Huang  K Wu 《PloS one》2012,7(7):e42004
In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.  相似文献   

17.
The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from Bacillus thuringiensis (Bt). However, fitness costs may act to delay pest resistance to Bt toxins. Meta-analysis of results from four previous studies revealed that the entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinernematidae) imposed a 20% fitness cost for larvae of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), that were homozygous for resistance to Bt toxin Cry1Ac, but no significant fitness cost was detected for heterozygotes. We conducted greenhouse and laboratory selection experiments to determine whether S. riobrave would delay the evolution of pink bollworm resistance to Cry1Ac. We mimicked the high dose/refuge scenario in the greenhouse with Bt cotton (Gossypium hirsutum L.) plants and refuges of non-Bt cotton plants, and in the laboratory with diet containing Cry1Ac and refuges of untreated diet. In both experiments, half of the replicates were exposed to S. riobrave and half were not. In the greenhouse, S. riobrave did not delay resistance. In the laboratory, S. riobrave delayed resistance after two generations but not after four generations. Simulation modeling showed that an initial resistance allele frequency > 0.015 and population bottlenecks can diminish or eliminate the resistance-delaying effects of fitness costs. We hypothesize that these factors may have reduced the resistance-delaying effects of S. riobrave in the selection experiments. The experimental and modeling results suggest that entomopathogenic nematodes could slow the evolution of pest resistance to Bt crops, but only under some conditions.  相似文献   

18.
Globally, the estimated total area planted with transgenic plants producing Bacillus thuringiensis (Bt) toxins was 12 million hectares in 2001. The risk of target pests becoming resistant to these toxins has led to the implementation of resistance-management strategies. The efficiency and sustainability of these strategies, including the high-dose plus refuge strategy currently recommended for North American maize, depend on the initial frequency of resistance alleles. In this study, we estimated the initial frequencies of alleles conferring resistance to transgenic Bt poplars producing Cry3A in a natural population of the poplar pest Chrysomela tremulae (Coleoptera: Chrysomelidae). We used the F(2) screen method developed for detecting resistance alleles in natural pest populations. At least three parents of the 270 lines tested were heterozygous for a major Bt resistance allele. We estimated mean resistance-allele frequency for the period 1999-2001 at 0.0037 (95% confidence interval = 0.00045-0.0080) with a detection probability of 90%. These results demonstrate that (i) the F(2) screen method can be used to detect major alleles conferring resistance to Bt-producing plants in insects and (ii) the initial frequency of alleles conferring resistance to Bt toxin can be close to the highest theoretical values that are expected prior to the use of Bt plants if considering fitness costs and typical mutation rates.  相似文献   

19.
Models of the evolution of insect resistance to transgenic crops have often assumed that population size is infinite or that carrying capacity is fixed. To evaluate potential effects of population size on resistance evolution, we conducted sensitivity analyses by using a stochastic, spatially explicit model based partly on the interaction between pink bollworm and Bacillus thuringiensis (Bt) cotton. We examined interactions of carrying capacity, region size, dispersal, and percentage of fields planted with Bt cotton. The median and variance in the time to resistance decreased as region size increased, regardless of carrying capacity. This occurred because larger regions were more likely to have at least one field in which resistance evolved rapidly and served as a source from which resistance spread throughout the region. Carrying capacity significantly affected the median time to resistance with 75% of fields planted with Bt cotton, but not with 50% Bt cotton. In contrast, carrying capacity significantly influenced the variance in the time to resistance with 50% Bt cotton, but not with 75% Bt cotton. We also found resistance evolution was affected by interactions between carrying capacity, dispersal, and the percentage of fields planted with Bt cotton. The high variability observed in our simulations indicates that factors affecting stochastic events can play an important role in the evolution of resistance. Because population size determines the extent to which stochastic events are important, reasonable estimates of population size are essential for devising robust models of resistance evolution.  相似文献   

20.
Bacillus thuringiensis (Bt) crops require a high dosage of Bt toxin to delay development of insect resistance, in particular, when the refuge strategy is applied. This strategy is threatened by plant developmental and environmental factors that might reduce Bt toxin concentration and Bt efficacy in Bt crops. Growth of Bt (Cry1Ac) cotton under prolonged, moderate water deficit as a single stress factor was evaluated. Bt cotton plants were analysed for physiological performance, Bt toxin concentration and Bt efficacy. For performance analysis, leaf and total plant dry weight and leaf area were measured. Bt toxin concentration was determined by an immuno‐assay. Effects of Bt toxin on growth and mortality of African cotton bollworm, Helicoverpa armigera, larvae were measured in different plant organs. Leaves from young plants exposed for 30 days to moderate water deficit had both higher Bt toxin concentrations and were more effective against larvae than leaves, flowers or bolls from mature flowering plants exposed to 60 days of moderate water deficit. Although growth of Bt cotton plants under moderate water‐deficit conditions decreased Bt concentrations in leaves, flowers and bolls, this had no effect on efficacy against first‐instar cotton bollworm larvae. No significant evidence was found that moderate water deficit, as a single stress factor, decreases Bt efficacy in Bt cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号