首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop-to-wild hybridization has the potential to introduce beneficial traits into wild populations. Gene flow from genetically engineered crops, in particular, can transfer genes coding for traits such as resistance to herbicides, insect herbivores, disease, and environmental stress into wild plants. Cultivated sunflower (Helianthus annuus) hybridizes spontaneously with wild/weedy populations (also H. annuus), but little is known about the relative fitness of F1 hybrids. In order to assess the ease with which crop-to-wild introgression can proceed, we compared characteristics of F1 wild-crop progeny with those of purely wild genotypes. Two nontransgenic, cultivated varieties were crossed with wild plants from three different regions-Texas, Kansas, and North Dakota. Seed burial experiments in the region of origin showed that wild-crop seeds had somewhat higher germination rates (less dormancy) than wild seeds from Kansas and North Dakota, while no differences were seen in seeds from Texas. Progeny from each type of cross were grown in outdoor pots in Ohio and in a weedy field in Kansas to quantify lifetime fecundity and flowering phenology. Flowering periods of hybrid and wild progeny overlapped considerably, especially in plants from North Dakota and Texas, suggesting that these hybrids are very likely to backcross with wild plants. In general, hybrid plants had fewer branches, flower heads, and seeds than wild plants, but in two crosses the fecundity of hybrids was not significantly different from that of purely wild plants. In Ohio, wild-crop hybrids from North Dakota appeared to be resistant to a rust that infected 53% of the purely wild progeny, indicating a possible benefit of "traditional" crop genes. In summary, our results suggest that F1 wild-crop hybrids had lower fitness than wild genotypes, especially when grown under favorable conditions, but the F1 barrier to the introgression of crop genes is quite permeable.  相似文献   

2.
 The development of transgenic plants has heightened concern about the possible escape of genetically engineered material into the wild. Hybridization between crops and their wild relatives provides a mechanism by which this could occur. While hybridization has been documented between several crops and wild or weedy relatives, little is known about the persistence of cultivar genes in wild populations in the generations following hybridization. Wild and weedy sunflowers occur sympatrically with cultivated sunflowers throughout much of the cultivation range, and hybridization is known to occur. We surveyed two cultivar-specific RAPD markers in 2700 progeny in a naturally occurring population of wild Helianthus annuus over five generations following a single generation of hybridization with the cultivar. Moderate levels of gene flow were detected in the first generation (42% hybrids at the crop margin) and cultivar allele frequencies did not significantly decline over four subsequent generations. These results indicate that gene flow from cultivated into wild populations of sunflowers can result in the long-term establishment of cultivar alleles in wild populations. Furthermore, we conclude that neutral or favorable transgenes have the potential to escape and persist in wild sunflower populations. Received: 1 November 1996/Accepted: 17 January 1997  相似文献   

3.
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre-and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species,R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation.All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators;reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.  相似文献   

4.
Transgenic plants have increased interest in the study of crop gene introgression in wild populations. Genes (or transgenes) conferring adaptive advantages persist in introgressed populations, enhancing competitiveness of wild or weedy plants. This represents an ecological risk that could increase problems of weed control. Introgression of cultivar alleles into wild plant populations via crop–wild hybridisations is primarily governed by their fitness effect. To evaluate this, we studied the second generation of seven wild–crop interspecific hybrids between weedy Helianthus petiolaris and cultivated sunflower, Hannuus var. macrocarpus. The second generation comprised open‐pollinated progeny and backcrosses to the wild parent, mimicking crosses that occur in natural situations. We compared a number of morphological, life history and fitness traits. Multivariate analysis showed that the parental species Hannuus and Hpetiolaris differed in a number of morphological traits, while the second hybrid generation between them was intermediate. Sunflower crop introgression lowered fitness of interspecific hybrids, but fitness parameters tended to recover in the following generation. Relative frequency of wild/weedy and introgressed plants was estimated through four generations, based on male and female parent fitness. In spite of several negative selection coefficients observed in the second generation, introgressed plants could be detected in stands of <100 weedy Hpetiolaris populations. The rapid recovery of fecundity parameters leads to prediction that any trait conferring an ecological advantage will diffuse into the wild or weedy population, even if F1 hybrids have low fitness.  相似文献   

5.
The inevitable escape of transgenic pollen from cultivated fields will lead to the emergence of transgenic crop-wild plant hybrids in natural patches of wild plants. The fate of these hybrids and that of the transgene depend on their ability to compete with their wild relatives. Here we study ecological factors that may enhance the fitness of genetically modified hybrids relative to wild plants for a Bacillus thuringiensis (Bt) transgene conferring resistance to insects. Mixed stands of wild plants and first-generation hybrids were grown under different conditions of herbivore pressure and density, with Bt oilseed rape (Brassica napus) as the crop and B. rapa as the wild recipient. Biomass and fitness components were measured from plant germination to the germination of their offspring. The frequency of transgenic seedlings in the offspring generation was estimated using the green fluorescent protein marker. The biomass of F1 Bt-transgenic hybrids relative to that of wild-type plants was found to be sensitive to both plant density and herbivore pressure, but herbivore pressure appeared as the major factor enhancing their relative fitnesses. In the absence of herbivore pressure, Bt hybrids produced 6.2-fold fewer seeds than their wild neighbors, and Bt plant frequency fell from 50% to 16% within a single generation. Under high herbivore pressure, Bt hybrids produced 1.4-fold more seeds, and Bt plant frequency was 42% in the offspring generation. We conclude that high-density patches of highly damaged wild plants are the most vulnerable to Bt-transgene invasion. They should be monitored early to detect potential transgene spread.  相似文献   

6.
? Premise of the study: Gene flow from crops to wild relatives has received considerable attention since the advent of genetically modified crops. Numerous researchers have found wild-crop hybrids to be nearly as fit as their wild parents, which suggests that crop genes may persist in wild populations. Components of the ecological fitness of cultivated sorghum, its wild relative, shattercane, and their hybrids have not been studied. ? Methods: To assess the potential for gene introgression into shattercane, we crossed cultivated sorghum to a single inbred shattercane line to produce F(1) hybrids and measured growth and several components of ecological fitness in relation to both parents in Nebraska, USA. ? Key results: Germination of F(1) seeds was similar to that of its shattercane parent except at high temperatures, where it was as sensitive as the sorghum parent. The F(1) grew taller and produced more biomass than either parent, but the F(1) leaf area index was intermediate. Fecundity of the F(1) plant was similar to that of shattercane and much greater than that of cultivated sorghum. ? Conclusions: Considering all data, the ecological fitness of shattercane × cultivated sorghum F(1) hybrids may be equivalent to the wild shattercane parent, which suggests that crop genes that are either neutral or beneficial to shattercane would persist in populations within agroecosystems.  相似文献   

7.
The existence of transgenic hybrids resulting from transgene escape from genetically modified (GM) crops to wild or weedy relatives is well documented but the fate of the transgene over time in recipient wild species populations is still relatively unknown. This is the first report of the persistence and apparent introgression, i.e. stable incorporation of genes from one differentiated gene pool into another, of an herbicide resistance transgene from Brassica napus into the gene pool of its weedy relative, Brassica rapa , monitored under natural commercial field conditions. Hybridization between glyphosate-resistant [herbicide resistance (HR)] B. napus and B. rapa was first observed at two Québec sites, Ste Agathe and St Henri, in 2001. B. rapa populations at these two locations were monitored in 2002, 2003 and 2005 for the presence of hybrids and transgene persistence. Hybrid numbers decreased over the 3-year period, from 85 out of ~200 plants surveyed in 2002 to only five out of 200 plants in 2005 (St Henri site). Most hybrids had the HR trait, reduced male fertility, intermediate genome structure, and presence of both species-specific amplified fragment length polymorphism markers. Both F1 and backcross hybrid generations were detected. One introgressed individual, i.e. with the HR trait and diploid ploidy level of B. rapa, was observed in 2005. The latter had reduced pollen viability but produced ~480 seeds. Forty-eight of the 50 progeny grown from this plant were diploid with high pollen viability and 22 had the transgene (1:1 segregation). These observations confirm the persistence of the HR trait over time. Persistence occurred over a 6-year period, in the absence of herbicide selection pressure (with the exception of possible exposure to glyphosate in 2002), and in spite of the fitness cost associated with hybridization.  相似文献   

8.
Song ZP  Lu BR  Wang B  Chen JK 《Annals of botany》2004,93(3):311-316
BACKGROUND AND AIMS: Introgression of crop genes into populations of wild relatives has important implications for germplasm conservation as well as for the persistence of novel transgenes in wild populations. Studies of hybrid fitness can be used to evaluate the potential for introgression to occur following episodes of interspecific hybridization. METHODS: This study estimated relative fitness of interspecific hybrids through performance comparison of F(1) hybrids with their parental species, a cultivated rice (Oryza sativa) Minghui-63 and perennial common wild rice (O. rufipogon) under the cultivation conditions. KEY RESULTS: Compared with their parents, the hybrids had the lowest values of seedling survival ability, pollen viability and seed production; intermediate values of seed germination, spikelet production and flag leaf areas; and the highest values of plant height, number of tillers and panicles. The hybrids performed poorly at the stage of sexual reproduction, although they had a slightly higher hybrid vigour at the vegetative growth stage and better tillering ability than their wild parent. There were no significant differences in composite fitness across the whole life-history between the hybrids and their wild parental species. CONCLUSIONS: Rice genes, including transgenes, might persist in wild rice populations through vegetative and sexual reproduction. Further studies are needed to examine whether the extent of gene flow from rice is sufficiently significant to influence genetic diversity in wild populations of O. rufipogon, a species that has become endangered in some regions of south-east Asia.  相似文献   

9.
The genus Fragaria (Rosaceae) contains 24 species, including hybrid species such as the garden strawberry (Fragaria × ananassa Duch.). Natural hybridization between Fragaria species has repeatedly been reported, and studies on the hybridization potential between F. × ananassa and its wild relatives have become increasingly important with the outlook for genetically modified garden strawberries. In Europe, a candidate species for hybridization with garden strawberries is the common woodland strawberry (Fragaria vesca L.). Although a previous field survey indicated that the potential for hybridization between F. vesca and F. × ananassa is low, it is not clear whether the lack of natural hybrids is caused by known pre- and postzygotic barriers, or whether hybrid plants lack the fitness to establish in natural F. vesca populations. We grew different F. vesca and F. vesca × F. × ananassa hybrid clones with and without competition in a greenhouse and assessed biomass production, clonal reproduction, and sexual reproduction of plants. While some hybrid clones exceeded F. vesca in biomass production, general clonal reproduction was much lower and delayed in hybrids. Furthermore, hybrids were sterile. These results demonstrate a mechanism by which the general lack of F. vesca × F. × ananassa hybrids in natural habitats can be explained, in addition to the known low hybridization potential between garden and woodland strawberries. We conclude that hybrids have a competitive disadvantage against co-occurring F. vesca plants due to inferior and delayed clonal reproduction, and that the potential for hybrid establishment under natural conditions is low.  相似文献   

10.
Transgenes introduced into crops can escape in time, as well as space, via the seed bank. For annual plants, especially ruderals, seed bank behaviour may be the most important factor determining population persistence. Crop seeds may exhibit some dormancy and germination cueing in the soil but are expected to be less able to persist than their wild relatives, which often have considerable dormancy and longevity, as well as effective germination cueing responses. Crop-wild hybrids may have seed bank characteristics more suited to persistence, and maternal effects may favour persistence of hybrids having wild plants for their female parent. Escape of transgenes via crop-wild hybrids presents unique concerns not present for crops. Hybrids can undergo natural selection and may back-cross with wild plants. We suggest methods that can be used in conjunction with evaluation of the relative fitness of crop-wild hybrids that will determine the likelihood of back-crossing. Accurate assessment of escape in time and transgene persistence via crop-wild hybrids requires proper plant materials. We emphasize the use of null segregants as controls for transgenic crops and for generating crop-wild hybrid controls for transgenic hybrids. Since good empirical and theoretical understanding of how individual genes influence the fate of plants in different environments is lacking, evaluation of escape in time and the persistence of transgenes via crop-wild hybrids should be on a case-by-case basis.  相似文献   

11.
Hybridization is an important factor in the evolution of plants; however, many of the studies that have examined hybrid fitness have been concerned with the study of early generation hybrids. We examined the early- and late-generation fitness consequences of hybridization between two ecotypes of the selfing annual Avena barbata in a greenhouse environment as well as in two natural environments. Fitness of early generation (F2) hybrids reflects both the action of dominance effects (hybrid vigor) and recombination (hybrid breakdown) and was not significantly different from that of the midparent in any environment. Fitness of later generation (F6) recombinant inbred lines (RILS) derived from the cross reflect both the loss of early generation heterozygosity as well as disruption of any coadapted gene complexes present in the parents. In all environments, F6 RILs were on average significantly less fit than the (equally homozygous) midparent, indicating hybrid breakdown through the disruption of epistatic interactions. However, the inbred F6 were also less fit than the heterozygous F2, indicating that hybrid vigor also occurs in A. barbata, and counteracts hybrid breakdown in early generation hybrids. Also, although the F6 generation mean is lower than the midparent mean, there are individual genotypes within the F6 generation that are capable of outperforming the parental ecotypes in the greenhouse. Fewer hybrid genotypes are capable of outperforming the parental ecotypes in the field. Overall, these experiments demonstrate how a single hybridization event can result in a number of outcomes including hybrid vigor, hybrid breakdown, and transgressive segregation, which interact to determine long-term hybrid fitness.  相似文献   

12.
Crop-wild hybridization may produce offspring with lower fitness than their wild parents due to deleterious crop traits and outbreeding depression. Over time, however, selection for improved fitness could lead to greater invasiveness of hybrid taxa. To examine evolutionary change in crop-wild hybrids, we established four wild ( Raphanus raphanistrum ) and four hybrid radish populations ( R. raphanistrum  ×  Raphanus sativus ) in Michigan (MI), USA. Hybrid and wild populations had similar growth rates over four generations, and pollen fertility of hybrids improved. We then measured hybrid and wild fitness components in two common garden sites within the geographical range of wild radish [MI and California (CA)]. Advanced generation hybrids had slightly lower lifetime fecundity than wild plants in MI but exhibited c. 270% greater lifetime fecundity and c. 22% greater survival than wild plants in CA. Our results support the hypothesis that crop-wild hybridization may create genotypes with the potential to displace parental taxa in new environments.  相似文献   

13.
Magnussen LS  Hauser TP 《Heredity》2007,99(2):185-192
Many cultivated plant species are able to hybridize with related wild plants. However, it is not clear whether their hybrids are able to survive and reproduce outside managed fields, and if cultivar genes introgress into wild populations. In areas where wild carrots co-occur with carrot root-crops, pollen and seeds may flow from two different sources in the fields to the surrounding wild populations: from pure cultivar plants that occasionally flower, and from flowering 'bolters' that originate from hybridizations between wild (male) and cultivated carrots (female) in seed production fields in warmer regions of the world. To test whether hybrids are formed and survive in wild Danish populations, and whether prolonged hybridization has led to introgression of cultivar genes, we collected leaf material from adult individuals growing close to carrot fields and analysed their genotypic composition by AFLP. Four hybrids were identified among the 71 plants analysed, and these were most likely F(2) or backcross individuals, sired by pollen from hybrid bolters. Wild populations close to fields were genetically somewhat more similar to cultivars than wild populations far from fields, suggesting that neutral or beneficial cultivar alleles can introgress into the wild gene pool. Despite generations of improvement and adaptation of cultivar carrots to highly managed field conditions, hybrids can thus sometimes survive in wild populations close to carrot fields, and their genes transfer to wild populations by introgression.  相似文献   

14.
Crop-weed hybridization can potentially influence the evolutionary ecology of wild populations. Many crops are known to hybridize with wild relatives, but few studies have looked at the long-term persistence of crop genes in the wild. This study investigated one factor in the hybridization process in radish: differential pollinator visitation to wild radish (Raphanus raphanistrum) vs. crop-wild F1 hybrids (R. sativus x R. raphanistrum). Wild genotypes had yellow flowers, a recessive single-locus trait, whereas hybrids always had white or pale pink flowers. In experimental arrays in northern Michigan, total pollinator visitation was significantly biased toward wild plants when the frequencies of wild and hybrid plants were equal. Syrphid flies, the most frequent visitors, preferred wild plants while bumble bees showed no preference. This pattern was also observed when hybrid plants were overrepresented in the array (12 hybrid:2 wild). In contrast, when hybrid plants were rare (2 hybrid:12 wild), neither morph was preferred by any pollinator group. Later in the summer, pollinators were also observed in a large experimental garden with nearly equal frequencies of wild and hybrid plants. Cabbage butterflies (Pieris rapae) strongly overvisited wild plants, while bumble bees showed a slight preference for hybrids. Taken together, these studies suggest that F1 hybrids may not be at a disadvantage with regard to pollinator visits when they occur at low frequencies or when bumble bees are frequent flower visitors. Thus, variation in the proportion of white-flowered morphs among wild radish populations could be influenced by different histories of crop-to-wild hybridization, as well as by variation in the composition of local pollinator taxa.  相似文献   

15.
The evolutionary impact of crop-to-wild gene flow depends on the fitness of hybrids under natural, competitive conditions. Here, we measured the performance of third-generation (F3) radish hybrids (Raphanus raphanistrum x Raphanus sativus) and weedy R. raphanistrum to understand how competitive interactions affect life history and relative fecundity. Three wild and three F1 crop-wild hybrid radish populations were established in semi-natural, agricultural conditions in Michigan, USA. The effects of competition on life-history traits and fecundity of F3 progeny were measured 2 yr later in a common garden experiment. Third-generation hybrid plants generally produced fewer seeds per fruit and set fewer fruits per flower than wild plants, resulting in lower lifetime fecundity. With increasing competition, age at reproduction was delayed, the relative number of seeds per fruit was reduced in wild plants and differences between hybrid and wild fecundity diminished. Competition may enhance the fecundity of advanced-generation hybrids relative to wild plants by reducing differences in life history, potentially promoting the introgression of crop alleles into weed populations.  相似文献   

16.

Premise

Cultivated species and their wild relatives often hybridize in the wild, and the hybrids can survive and reproduce in some environments. However, it is unclear whether cultivar alleles are permanently incorporated into the wild genomes or whether they are purged by natural selection. This question is key to accurately assessing the risk of escape and spread of cultivar genes into wild populations.

Methods

We used genomic data and population genomic methods to study hybridization and introgression between cultivated and wild carrot (Daucus carota) in the United States. We used single nucleotide polymorphisms (SNPs) obtained via genotyping by sequencing for 450 wild individuals from 29 wild georeferenced populations in seven states and 144 cultivars from the United States, Europe, and Asia.

Results

Cultivated and wild carrot formed two genetically differentiated groups, and evidence of crop–wild admixture was detected in several but not all wild carrot populations in the United States. Two regions were identified where cultivar alleles were present in wild carrots: California and Nantucket Island (Massachusetts). Surprisingly, there was no evidence of introgression in some populations with a long-known history of sympatry with the crop, suggesting that post-hybridization barriers might prevent introgression in some areas.

Conclusions

Our results provide support for the introgression and long-term persistence of cultivar alleles in wild carrots populations. We thus anticipate that the release of genetically engineered (GE) cultivars would lead to the introduction and spread of GE alleles in wild carrot populations.  相似文献   

17.
Fitness of hybrids between genetically modified (GM) crops and wild relatives influences the likelihood of ecological harm. We measured fitness components in spontaneous (non-GM) rapeseed x Brassica rapa hybrids in natural populations. The F1 hybrids yielded 46.9% seed output of B. rapa, were 16.9% as effective as males on B. rapa and exhibited increased self-pollination. Assuming 100% GM rapeseed cultivation, we conservatively predict < 7000 second-generation transgenic hybrids annually in the United Kingdom (i.e. approximately 20% of F1 hybrids). Conversely, whilst reduced hybrid fitness improves feasibility of bio-containment, stage projection matrices suggests broad scope for some transgenes to offset this effect by enhancing fitness.  相似文献   

18.
With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F(2:3) families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na(+), Cl(-) and K(+)) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop-wild hybridization takes place.  相似文献   

19.
Here we tested two possible nonexclusive explanations for the maintenance of a hybrid swarm between Senecio jacobaea and Senecio aquaticus; first, that genotype-by-environment interactions involving water and nutrient clines are involved in hybrid fitness, and second, heterosis in early hybrid generations may provide an initial hybrid advantage that contributes to hybrid persistence. In three climate chamber studies, fitness and root growth were measured for parental species and natural and artificial F1 hybrids, in order to determine whether hybrids occur in habitats where they are more fit than parental species. Natural hybrids, which are generally back-crossed to S. jacobaea, always equaled S. jacobaea in growth characteristics. Maternal effects played a role in the fitness of F1 hybrids, with offspring from S. jacobaea mothers exhibiting higher fitness than those from S. aquaticus mothers, and compared with parental species and natural hybrids. Natural hybrids are not distributed in zones where they are most fit with respect to nutrient and water regimes. Superior fitness of early generation hybrids may contribute to hybrid swarm stability.  相似文献   

20.
ABSTRACT: BACKGROUND: In food-deceptive orchids of the genera Anacamptis, Neotinea and Orchis floral isolation has been shown to be weak, whereas late-acting reproductive barriers are mostly strong, often restricting hybridization to the F1 generation. Only in a few species hybridization extends beyond the F1 generation, giving rise to hybrid swarms. However, little is known about the abundance of later-generation hybrids and what factors drive their occurrence in hybrid populations. In this study, molecular analyses were combined with detailed morphological measurements in a hybrid population of two closely related Orchis species (Orchis militaris and O. purpurea) to investigate the hypothesis that the abundance of later-generation hybrids is driven by changes in floral characters after hybridization that exert selective pressures that in turn affect hybridization. RESULTS: Both the molecular and morphological data point to extensive genetic and morphological homogenization and asymmetric introgression. Estimating genomic clines from the multi-locus genotype data and testing for deviation from neutrality revealed that 30 out of 113 (27%) AFLP markers significantly deviated from neutral expectations. Plants with large floral displays or plant with flowers that resembled more O. purpurea had higher female fitness than plants with small floral displays or plants with flowers resembling more O. militaris, suggesting that directional selection may have contributed to the observed patterns of introgression. CONCLUSIONS: These results indicate that in closely related orchid species hybridization and gene introgression may be partly driven by selection for floral traits of one of the parental types. However, because some pure individuals were still present in the studied population, the parental species appeared to be sufficiently isolated to survive the challenge of sympatry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号