首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zito K  Parnas D  Fetter RD  Isacoff EY  Goodman CS 《Neuron》1999,22(4):719-729
The glutamatergic neuromuscular junction (NMJ) in Drosophila adds new boutons and branches during larval development. We generated transgenic fruit flies that express a novel green fluorescent membrane protein at the postsynaptic specialization, allowing for repeated noninvasive confocal imaging of synapses in live, developing larvae. As synapses grow, existing synaptic boutons stretch apart and new boutons insert between them; in addition, new boutons are added at the ends of existing strings of boutons. Some boutons are added de novo, while others bud from existing boutons. New branches form as multiple boutons bud from existing boutons. Nascent boutons contain active zones, T bars, and synaptic vesicles; we observe no specialized growth structures. Some new boutons exhibit a lower level of Fasciclin II, suggesting that the levels of this synaptic cell adhesion molecule vary locally during synaptic growth.  相似文献   

2.
Synapses in the rat substantia nigra   总被引:1,自引:0,他引:1  
The composition and organization of the input to the rat substantia nigra were studied with the electron microscope. Four distinct types of synaptic boutons were described. The first contained small (381 A), clear synaptic vesicles. The second type contained the small, clear vesicles and several large, dense-core vesicles. The third ending contained large, dense-core vesicles and larger (581 A) clear vesicles. The fourth ending, found on the axon hillock and other terminal boutons, contained slightly elongated, clear synaptic vesicles. The presence of these four boutons was discussed in light of the known afferent input and neurochemical composition of the substantia nigra.  相似文献   

3.
Final motor neurons in sympathetic and parasympathetic ganglia receive synaptic inputs from preganglionic neurons. Quantitative ultrastructural analyses have shown that the spatial distribution of these synapses is mostly sparse and random. Typically, only about 1%-2% of the neuronal surface is covered with synapses, with the rest of the neuronal surface being closely enclosed by Schwann cell processes. The number of synaptic inputs is correlated with the dendritic complexity of the target neuron, and the total number of synaptic contacts is related to the surface area of the post-synaptic neuron. Overall, most neurons receive fewer than 150 synaptic contacts, with individual preganglionic inputs providing between 10 and 50 synaptic contacts. This variation is probably one determinant of synaptic strength in autonomic ganglia. Many neurons in prevertebral sympathetic ganglia receive additional convergent synaptic inputs from intestinofugal neurons located in the enteric plexuses. The neurons support these additional inputs via larger dendritic arborisations together with a higher overall synaptic density. There is considerable neurochemical heterogeneity in presynaptic boutons. Some synapses apparently lack most of the proteins normally required for fast transmitter release and probably do not take part in conventional ganglionic transmission. Furthermore, most preganglionic boutons in the ganglionic neuropil do not form direct synaptic contacts with any neurons. Nevertheless, these boutons may well contribute to slow transmission processes that need not require conventional synaptic structures.  相似文献   

4.
Emptage NJ  Reid CA  Fine A 《Neuron》2001,29(1):197-208
Evoked transmitter release depends upon calcium influx into synaptic boutons, but mechanisms regulating bouton calcium levels and spontaneous transmitter release are obscure. To understand these processes better, we monitored calcium transients in axons and presynaptic terminals of pyramidal neurons in hippocampal slice cultures. Action potentials reliably evoke calcium transients in axons and boutons. Calcium-induced calcium release (CICR) from internal stores contributes to the transients in boutons and to paired-pulse facilitation of EPSPs. Store depletion activates store-operated calcium channels, influencing the frequency of spontaneous transmitter release. Boutons display spontaneous Ca2+ transients; blocking CICR reduces the frequency of these transients and of spontaneous miniature synaptic events. Thus, spontaneous transmitter release is largely calcium mediated, driven by Ca2+ release from internal stores. Bouton store release is important for short-term synaptic plasticity and may also contribute to long-term plasticity.  相似文献   

5.
The tuberculo-ventral tract represents a short nervous circuit within the auditory cochlear nuclei. Tuberculo-ventral neurons of the dorsal cochlear nucleus send isofrequency inhibitory inputs to bushy cells of the ventral cochlear nucleus. Injection of wheat germ agglutinin conjugated to horseradish peroxidase into the rat ventral cochlear nucleus, labelled tuberculo-ventral neurons retrogradely in the deep polymorphic layer of the ipsilateral dorsal cochlear nucleus. Five to 20% of the perimeter of these cells was covered by synaptic boutons, most of which contained flat and pleomorphic vesicles. These boutons contained glycine and sometimes GABA. Occasional small axo-somatic boutons contained round vesicles and were immunonegative for both glycine and GABA. This study shows that the synaptic profile of tuberculo-ventral neurons is different from that of other medium-size glycinergic neurons within the polymorphic layer or more superficial regions of the dorsal cochlear nucleus like cartwheel neurons. In fact the latter mostly receive boutons that contain pleomorphic vesicles.  相似文献   

6.
Acetylcholinesterase (AChE) activity at the synapses of presynaptic boutons on presumed alpha-motoneurons in the chicken ventral horn was studied histochemically at the light- and electron-microscope levels. At the light-microscope level, many dot-like AChE-active sites were observed on the soma and dendrites of presumed alpha-motoneurons. On electron microscopy, reaction products for AChE activity were observed mainly in the synaptic clefts of the four kinds of presynaptic boutons: (1) S type boutons, (2) boutons containing small, spherical, dense cored vesicles (diameter range, 60-105 nm) and spherical, clear vesicles, (3) boutons containing medium-sized, spherical, dense cored vesicles (65-115 nm) and spherical, clear vesicles, and (4) boutons containing large, spherical, dense cored vesicles (80-130 nm) and spherical, clear vesicles. In the light of previous physiological and biochemical studies, the present results suggest the possibility that each of these presynaptic boutons which are AChE-active in their synaptic clefts may contain acetylcholine, substance P, or enkephalins which acts as a neurotransmitter or modulator.  相似文献   

7.
Callaway EM 《Neuron》2006,49(6):780-783
Previous studies demonstrating turnover of the dendritic spines of cortical neurons have suggested a modest rate of turnover of synaptic connections. Now, two papers in this issue of Neuron address this question from the other side of the synapse, the presynaptic boutons. Both studies use in vivo multiphoton imaging of cortical axons to show that synaptic boutons come and go, just like spines. One of the studies shows remarkable diversity in the lability of boutons depending on the cell type from which they originate, with some boutons displaying nearly complete turnover in just a few months. The other study shows that bouton turnover occurs in primates as well as rodents.  相似文献   

8.
Synaptic mitochondria are thought to be critical in supporting neuronal energy requirements at the synapse, and bioenergetic failure at the synapse may impair neural transmission and contribute to neurodegeneration. However, little is known about the energy requirements of synaptic vesicle release or whether these energy requirements go unmet in disease, primarily due to a lack of appropriate tools and sensitive assays. To determine the dependence of synaptic vesicle cycling on mitochondrially derived ATP levels, we developed two complementary assays sensitive to mitochondrially derived ATP in individual, living hippocampal boutons. The first is a functional assay for mitochondrially derived ATP that uses the extent of synaptic vesicle cycling as a surrogate for ATP level. The second uses ATP FRET sensors to directly measure ATP at the synapse. Using these assays, we show that endocytosis has high ATP requirements and that vesicle reacidification and exocytosis require comparatively little energy. We then show that to meet these energy needs, mitochondrially derived ATP is rapidly dispersed in axons, thereby maintaining near normal levels of ATP even in boutons lacking mitochondria. As a result, the capacity for synaptic vesicle cycling is similar in boutons without mitochondria as in those with mitochondria. Finally, we show that loss of a key respiratory subunit implicated in Leigh disease markedly decreases mitochondrially derived ATP levels in axons, thus inhibiting synaptic vesicle cycling. This proves that mitochondria-based energy failure can occur and be detected in individual neurons that have a genetic mitochondrial defect.  相似文献   

9.
Subcellular distribution of clathrin in cultured hypothalamic neurons.   总被引:1,自引:0,他引:1  
The subcellular distribution of clathrin has been examined in developing hypothalamic neurons cultured in a chemically defined medium up to synapse formation (12-13 days in vitro) and exposed, or not, to a depolarizing concentration of KCl (60 mM for 3 min) followed, or not, by a return to control KCl concentration (3 mM KCl for 3 min). Previous studies have shown that such treatments induce in synaptic boutons a rapid vesicle depletion followed by massive restoration. Using an enzyme immunoassay, we have compared the relative proportion of assembled and unassembled pools of clathrin as a function of exposure to depolarizing or repolarizing concentrations of KCl. In parallel we have localized clathrin at the electron microscopic level using immunoperoxidase. Clathrin concentration in culture is lower (0.36 vs 0.75%) and the proportion of unassembled clathrin is much higher than in the adult brain (82 vs 14%). These proportions were not affected by depolarizing or repolarizing treatments. Morphologically clathrin was exclusively detected in two neuron compartments: perikarya and synaptic boutons. In perikarya clathrin was localized as a thick coat on plasma membrane coated pits and in the Golgi zone on coated buds and vesicles, presumably located in a trans compartment. In synaptic boutons clathrin immunoreaction was found as an irregular thin rim around synaptic vesicles, whatever the polarization state of the cells, but coated vesicles were extremely rare. Taken together these findings raise the problem of the functional meaning and localization of the large unassembled pool of clathrin in such neurons and question its role in vesicular traffic in synaptic boutons.  相似文献   

10.
Summary The hippocampal mossy fiber boutons of the rabbit were studied with phase and electron microscopy. The injection of 3-acetylpyridine, methoxypyridoxine, and reserpine diminishes the conspicuous osmiophilic density of the mossy fiber boutons in comparison to similar regions from nontreated animals as observable in phase microscopy. However, electron micrographs of the same samples show little or no diminution in the number of those synaptic vesicles consisting of a clear homogeneous center (Type I). Treatment with monoamine liberator, reserpine, results in the same cytomorphological appearance of the boutons as with convulsant agents. The number of synaptic dense-core vesicles (Type II) is not altered after treatment with the convulsant agents or reserpine.A certain extra-vesicular substance and a certain granular component of the vesicular membranes of Type I vesicles is progressively reduced after treatment with all of these drugs. It is suggested that this accounts for the decreased density by phase microscopy.The monoamine oxidase inhibitor, iproniazid, increases the density of the extra-vesicular substance as well as the particles attached to the vesicular membranes of Type I vesicles.It is suggested that these osmiophilic particles contain the biogenic monoamines (in this instance probably serotonin and/or histamine) and that in acute experiments the liberation of these neurotransmitters is not related to a disappearence of dense-core vesicles concommitant with a depletion of neurotransmitters but is from particles in the extra-vesicular substance and the granular component of the vesicular of the Type I vesicles.Furthermore, the functional role of zinc in the synaptic vesicles of mossy fiber boutons of the hippocampus is discussed in regard to a possible storage mechanism for biogenic monoamines.This study was partly supported by USPHS Grant 5 P10 ESOO159.  相似文献   

11.
12.
Using pHluorin-tagged synaptic vesicle proteins we have examined the partitioning of these probes into recycling and nonrecycling pools at hippocampal nerve terminals in cell culture. Our studies show that for three of the major synaptic vesicle components, vGlut-1, VAMP-2, and Synaptotagmin I, approximately 50-60% of the tagged protein appears in a recycling pool that responds readily to sustained action potential stimulation by mobilizing and fusing with the plasma membrane, while the remainder is targeted to a nonrecycling, acidic compartment. The fraction of recycling and nonrecycling (or resting) pools varied significantly across boutons within an individual axon, from 100% resting (silent) to 100% recycling. Single-bouton bleaching studies show that recycling and resting pools are dynamic and exchange between synaptic boutons. The quantitative parameters that can be extracted with the approaches outlined here should help elucidate the potential functional role of the resting vesicle pool.  相似文献   

13.
Circadian rhythms in the morphology of neurons have been demonstrated in the fly Drosophila melanogaster. One such rhythm is characterized by changes in the size of synaptic boutons of an identified flight motor neuron, with larger boutons during the day compared with those at night. A more detailed temporal resolution of this rhythm shows here that boutons grow at a time of increased locomotor activity during the morning but become gradually smaller during the day and second period of increased locomotor activity in the evening. We have experimentally manipulated the synaptic activity of the fly during short periods of the day to investigate whether changes in bouton size might be a consequence of the different levels of synaptic activity associated with the locomotion rhythm of the fly. In the late night and early morning, when the flies normally have an intense period of locomotion, the boutons grow independently of whether the flies are active or completely paralyzed. Bouton size is not affected by sleep-deprivation during the early night. The cycle in bouton size persists for 2 days even in decapitated flies, which do not move, reinforcing the notion that it is largely independent of synaptic activity, and showing that a pacemaker other than the main biological clock can drive it.  相似文献   

14.
The ventral longitudinal muscles of the Drosphila larval body wall are innervated by at least four types of synaptic terminals that can be distinguished on morphological grounds at the light microscopical level. The innervation of these muscles has been previously shown to be regulated by neuronal activity. In this report we investigate the ultrastructural basis for synaptic bouton differences by using serial sections, and examine the structure of synaptic terminals in mutants with increased excitability. We report that individual identifiable muscle fibers are innervated by terminals containing two to three types of synaptic boutons that can be distinguished in terms of synaptic vesicle population, presynaptic and postsynaptic specialization, and general shape. We propose a model to account for the bouton types observed at the light microscopical level. We find that in the hyperexcitable mutant eag Sh, there are dramatic ultrastructural alterations at synaptic boutons. These alterations include a partial depletion of two types of synaptic vesicles and a change in appearance of a third type, changes in number and appearance of synaptic densities, and the presence of multivesicular bodies. Our results show that an increase in neuronal excitability produces profound effects in synaptic terminal structure. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Oestrogens organize and activate circuits within the vertebrate central nervous system. Oestrogen synthesis occurs via the expression of aromatase, a P450 enzyme detected in microsomes and more recently in pre-synaptic boutons. Synaptic aromatase has only been described in brain regions that express aromatase in many subcellular compartments, so its function remains poorly understood. To more thoroughly study the role of oestrogen synthesis at synaptic terminals, we examined the ultrastructural compartmentalization of aromatase in the zebra finch; a species in which high aromatase activity can be measured in brain areas that do not contain somal aromatase. Here, we report the presence of aromatase in pre-synaptic boutons in the hippocampus and the high vocal centre brain areas with low and undetectable somal aromatase, respectively, in addition to areas with abundant somal aromatase such as the preoptic area and caudomedial nidopallium. At these brain areas, males had more total synapses, more aromatase pre-synaptic boutons and importantly, the proportion of total synaptic profiles that expressed aromatase was significantly higher in males relative to females. Aromatase-positive pre-synaptic boutons were always observed innervating aromatase-negative post-synaptic elements. We conclude that oestrogen may be provided to discrete oestrogen-sensitive targets by synaptic aromatization. Further, some targets may be exposed to more oestrogen in males. The expression of aromatase in individual synapses of projection neurons represents a unique mechanism of neuroendocrine action. Neurons with steroidogenic capability may modulate distant targets with the specificity of axonal innervation.  相似文献   

16.
Summary Degenerating boutons, observed from 2 to 60 days after eye enucleation, displayed decreased plasma membrane density, increased axoplasmic density, and enlarged mitochondria with deformed cristae when compared with boutons from normal animals. There was also a loss of synaptic plasma membrane specialization and the boutons abnormally indented contiguous dendrites. The number and appearance of synaptic vesicles in some degenerating boutons were notably altered. Phagocytosis of boutons in most instances appeared to be accomplished by astrocytes. When degeneration was first apparent in some boutons, the subsynaptic organelle in the adjacent dendritic cytoplasm was enlarged, somewhat less dense and was associated with small granular and circular profiles. Subsynaptic organelles in experimental animals were absent from contiguities between dendrites and other cell processes, except in a few instances when only small portions of boutons remained at their synaptic sites, suggesting that the organelles disappeared when boutons had been completely phagocytized.Degenerating myelinated axons, observed from 2 to 300 days after enucleation, exhibited the same triad of features as degenerating boutons. They appeared to be phagocytized in most instances by dense glial processes, presumably oligodendrocytic, which were normally situated between the axon and its myelin sheath and were related to the inner mesaxon.This investigation was supported by U.S.P.H.S. Training Grants Nos. 2 T1 GM 202 T1 CA 505506, and 2RO 1 AM 368806.The author expresses his appreciation to Dr. A. J. Ladman for acquainting him with the techniques used in the study and to Dr. R. J. Barrnett for valuable criticism of this report. Gratitude is also extended to Mr. E. Z. Rutkowski for making the drawing.  相似文献   

17.
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population of cultured neurons was aquiring cholinergic capabilities, or whether this phenomenon was restricted to a subpopulation. After 1--6 and 8 wk in culture, neurons were fixed in KMnO4 after incubation in norepinephrine and prepared for electron microscopy analysis of synaptic vesicle content to determine whether vesicles were dense cored or clear. ChAc, acetylcholinesterase (AChE), and DOPA-decarboxylase (DDC) activities were assayed in sister cultures. In the period from 1 to 8 wk in culture, the average ChAc activity per neuron increased 1,100-fold, and the DDC and AChE activities increased 20- and 30-fold, respectively. After 1 wk in culture, 48 of 50 synaptic boutons contained predominantly dense-cored vesicles, but by 8 wk the synaptic vesicle population was predominantly of the clear type. At intermediate times, the vesicle population in many boutons was mixed. The morphology of the synaptic contacts on neuronal surfaces was that characteristic of autonomic systems, with no definite clustering of the vesicles adjacent to the area of contact. Increased vesicle size correlated with increasing age in culture and the presence of a dense core. Considering these data along with available physiological studies, we conclude that these cultures contain one population of neurons that is initially adrenergic. Over time, under conditions of this culture system, this population develops cholinergic mechanisms. That a neuron may, at a given time, express both cholinergic and adrenergic mechanisms is suggested by the approximately equal numbers of clear and dense-cored vesicles in the boutons found at the intermediate times.  相似文献   

18.

Background

Inhibitory innervation by parvalbumin (PV) expressing interneurons has been implicated in the onset of the sensitive period of visual plasticity. Immunohistochemical analysis of the development and plasticity of these inhibitory inputs is difficult because PV expression is low in young animals and strongly influenced by neuronal activity. Moreover, the synaptic boutons that PV neurons form onto each other cannot be distinguished from the innervated cell bodies by immunostaining for this protein because it is present throughout the cells. These problems call for the availability of a synaptic, activity-independent marker for PV+ inhibitory boutons that is expressed before sensitive period onset. We investigated whether synaptotagmin-2 (Syt2) fulfills these properties in the visual cortex. Syt2 is a synaptic vesicle protein involved in fast Ca2+ dependent neurotransmitter release. Its mRNA expression follows a pattern similar to that of PV throughout the brain and is present in 30–40% of hippocampal PV expressing basket cells. Up to now, no quantitative analyses of Syt2 expression in the visual cortex have been carried out.

Methodology/Principal Findings

We used immunohistochemistry to analyze colocalization of Syt2 with multiple interneuron markers including vesicular GABA transporter VGAT, calbindin, calretinin, somatostatin and PV in the primary visual cortex of mice during development and after dark-rearing.

Conclusions/Significance

We show that in the adult visual cortex Syt2 is only found in inhibitory, VGAT positive boutons. Practically all Syt2 positive boutons also contain PV and vice versa. During development, Syt2 expression can be detected in synaptic boutons prior to PV and in contrast to PV expression, Syt2 is not down-regulated by dark-rearing. These properties of Syt2 make it an excellent marker for analyzing the development and plasticity of perisomatic inhibitory innervations onto both excitatory and inhibitory neurons in the visual cortex.  相似文献   

19.
Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.  相似文献   

20.
Not much is known about the mobility of synaptic vesicles inside small synapses of the central nervous system, reflecting a lack of methods for visualizing these dynamics. We adapted confocal spot detection with fluctuation analysis to monitor the mobility of fluorescently labeled synaptic vesicles inside individual boutons of cultured hippocampal neurons. Using Monte Carlo simulations we were able to propose a simple quantitative model that can describe vesicle mobility in small hippocampal boutons under resting conditions and different pharmacological treatments. We find that vesicle mobility in a time window of 20 s can be well described by caged diffusion (D approximately 5 x 10(-5) microm(2)/s, cage sizes of approximately 50 nm). Mobility can be upregulated by phosphatase blockage and increased further by actin disruption in a dose-dependent manner. Inhibition of the myosin light chain kinase slows down vesicle mobility 10-fold, whereas other kinases like protein kinase C (PKC), A (PKA), and calmodulin kinase II (caMKII) do not affect mobility in unstimulated boutons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号