首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Osler disease is an autosomal dominant disorder of the fibrovascular tissue characterized by arteriovenous malformations with multi-systemic haemorrhages. Recurrent epistaxis is the predominant symptom in more than 90% of patients. Recent studies showed circadian and seasonal patterns in the onset of nosebleeds, similar to acute cardiovascular events, such as myocardial infarction and stroke. The aim of this study was to determine whether such patterns would also apply to the onset of epistaxis in patients with Osler disease. In all, 110 patients with Osler disease who were under treatment for recurrent epistaxis at the University Hospital of Mannheim were requested to complete a questionnaire addressing the intensity and frequency of epistaxis according to the classification of Bergler et al., as well as circadian and circannual rhythmicity in the occurrence of epistaxis according to visual analogue scales (VAS). More than half of the patients claimed to experience daily to weekly episodes of recurrent epistaxis. The occurrence of epistaxis showed a biphasic 24 h pattern, with a primary peak in the morning (05:00-8:00 h) and smaller secondary peaks in the evening (17:00-20:00 h and 21:00-00:00 h). No significant seasonal variation was found in the onset of epistaxis. However, a slight tendency, with a peak in winter months, was observed. Similar to other chronobiological studies on nosebleeds, this study showed that the 24 h pattern and seasonal tendency in the onset of epistaxis even applied to patients with Osler disease. Further investigations are necessary to determine the pathological mechanism underlying this phenomenon.  相似文献   

2.
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non-SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean±SEM) 23.7±1.6 yrs participated in this five-day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17±0:20 and 3:24 ±0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake-time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi-hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions.  相似文献   

3.
In order to investigate the role of prolactin in the control of the circadian rhythm of plasma aldosterone (PA), plasma renin activity (PRA), cortisol (PC), aldosterone and prolactin (PRL) levels were determined in samples at 4-hour intervals from 5 normal supine men over a period of 24 h under basal conditions and subsequently over a period of 24 h during suppression of prolactin release by bromocriptine (CB-154). After suppression of prolactin, statistically signific1nt circadian rhythms in PC and PA have been detected with a moderate decrease of PA concentration, while the PC level remained unalterated. PRA rhythmicity persisted with a significant shift of acrophase and remarkable reduction of plasma levels. Moreover, during CB administration a significant correlation was obtained between PA and PC, while no correlation was detected between PA and PRA. These data are consistent with the following concepts: (a) the prolactin does not play a significant role in the regulation of circadian rhythm and concentration of plasma aldosterone in normal supine men, and (b) bromocriptine induces a remarkable reduction of PRA and a variable decrease in plasma aldosterone, but it does not influence the secretion of cortisol in normal subjects.  相似文献   

4.
5.
Recent studies have shown the gene expression of several transporters to be circadian rhythmic. However, it remains to be elucidated whether the expression of P-glycoprotein, which is involved in the transport of many medications, undergoes 24 h rhythmicity. To address this issue, we investigated daily profiles of P-glycoprotein mRNA and protein levels in peripheral mouse tissues. In the liver and intestine, but not in the kidney, Abcb1a mRNA expression showed clear 24 h rhythmicity. On the other hand, Abcb1b and Abcb4, the other P-glycoprotein genes, did not exhibit significant rhythmic expression in the studied tissues. In the intestine, levels of whole P-glycoprotein also exhibited a daily rhythm, with a peak occurring in the latter half of the light phase and a trough at the onset of the light phase. Consistent with the day-night change of P-glycoprotein level, the ex vivo accumulation of digoxin, an Abcb1a P-glycoprotein substrate, into the intestinal segments at the onset of dark phase was significantly lower than it was at the onset of the light phase. Thus, Abcb1a P-glycoprotein expression, and apparently its function, are 24 h rhythmic at least in mouse intestine tissue. This circadian variation might be involved in various chronopharmacological phenomena.  相似文献   

6.
In this paper we compare rhythmic parameters of human body temperature simultaneously measured with digital thermometers and thermistors with memory (Thermochron iButtons®). Thirteen healthy male and female volunteers (mean age of 25) measured oral and axillary temperatures with digital thermometers every hour during wakefulness for two days and every three hours for three days, totalling five consecutive days. Concomitantly, they wore badges with thermistors in the thorax and the wrist. Temporal series circadian rhythmicity was evaluated with the Cosinor technique. Acrophases average were 17:32 h±2:02 h for axillary temperature, 10:12 h±7:26 h for thoracic temperature, 17:18 h±00:50 h for oral temperature and 4:15 h±1:55 h for wrist temperature. The rhythmic parameters of the wrist are more robust than those of the thorax. The collection of data in humans, generally performed with digital thermometers, is restricted to the waking phase and depends on the discipline of the volunteers. We suggest that the use of the thermistor with memory in the wrist can be adopted as alternative methodology to studies of human body temperature rhythmicity, especially recommended for long temporal series.  相似文献   

7.
The role of endogenous circadian rhythmicity in autonomic cardiac reactivity to different stressors was investigated. A constant routine protocol was used with repeated exposure to a dual task and a cold pressor test. The 29 subjects were randomly divided into two groups in order to manipulate prior wakefulness. Group 1 started at 09:00 h immediately after a monitored sleep period, whereas group 2 started 12 h later. Measures of interbeat intervals (IBI), respiratory sinus arrythmia (RSA, a measure of parasympathetic activity), pre-ejection period (PEP, a measure of sympathetic activity), as well as core body temperature (CBT) were recorded continuously. Multilevel regression analyses (across-subjects) revealed significant (mainly 24 h) sinusoidal circadian variation in the response to both stressors for IBI and RSA, but not for PEP. Individual 24 + 12 h cosine fits demonstrated a relatively large interindividual variation of the phases of the IBI and RSA rhythms, as compared to that of the CBT rhythm. Sinusoidal by group interactions were found for IBI and PEP, but not for RSA. These findings were interpreted as an indication for endogenous circadian and exogenous parasympathetic (vagal) modulation of cardiac reactivity, while sympathetic reactivity is relatively unaffected by the endogenous circadian drive and mainly influenced by exogenous factors.  相似文献   

8.
Seven clinically healthy, nondiabetic (ND) and four Type II diabetic (D) men were assessed for circadian rhythms in oxidative “stress markers.” Blood samples were collected at 3h intervals for ∼27 h beginning at 19:00h. Urine samples were collected every 3 h beginning with the 16:00h-19:00h sample. The dark (sleep) phase of the light-dark cycle extended from 22:30h to 06:30h, with brief awakening for sampling at 01:00h and 04:00h. Subjects were offered general hospital meals at 16:30h, 07:30h, and 13:30h (2400 cal in total/24 h). Serum samples were analyzed for uric acid (UA) and nitrite (NO) concentrations, and urine samples were assayed for 8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA), and 8-isoprostane (ISP). Data were analyzed statistically both by the population multiple-components method and by the analysis of variance (ANOVA). The 24h mean level of UA and NO was greater in D than in ND subjects (424 vs. 338 μmol/L and 39.2 vs. 12.7 μM, respectively). A significant circadian rhythm in UA (p=0.001) and NO (p=0.048) was evident in ND but not in D (p=0.214 and 0.065). A circadian rhythm (p=0.004, amplitude=8.6 pmol/kgbw/3h urine vol.) was also evident in urine 8-OHdG of ND but not of D. The 24h mean levels of ND and D were comparable (76.8 vs. 65.7 pmol/kgbw/3h urine vol.). No circadian rhythm by population multiple-components was evident in MDA and ISP levels of ND subjects, or in 8-OHdG, MDA, and ISP in D. However, a significant time-effect was demonstrated by ANOVA in all variables and groups. The 24h mean of MDA and ISP in D was significantly greater than in ND (214 vs. 119 nmol/3h urine vol. and 622 vs. 465 ng/3h urine vol.). The peak concentrations of the three oxidative “stress markers” in urine, like those of serum NO, occurred early in the evening in both groups of men. This observation suggests a correlation between increased oxidative damage and increased rate of anabolic-catabolic events as evidenced by similarities in the timing of peak NO production and in parameters relevant to metabolic functions.  相似文献   

9.
Coenzyme Q10 (CoQ10) or ubiquinone, a redox component of the mitochondrial electron transport chains, is a powerful antioxidant and membrane stabilizer that may prevent cellular damage during myocardial ischemia and reperfusion therapy. Coenzyme Q10 has been used primarily as an adjuvant therapy for some cardiomyopathies. However, one of the main problems in CoQ10 administration is the high variability of endogenous plasma and tissue levels, which seems to be dependent on several factors. This work explores temporal 24h and seasonal variation as well as gender and racial differences in endogenous plasma ubiquinone concentration. Coenzyme Q10 measurements (quantified by HPLC-UV) of 16 healthy volunteers were done during the daytime hours of activity beginning at 09:00h one day and ending at 09:00h the next day (13 different determinations) in two distinct months, April and October, of the year. A statistically significant circadian rhythm in plasma ubiquinone concentration that includes only the fundamental 24h component was demonstrated both in the April and October data. Furthermore, the time-point means of the ubiquinone concentration in the October study were invariably higher than those obtained in the April study. No statistically significant differences were found in CoQ10 concentration between male and female subjects, both in April and in October. In addition, racial differences were demonstrated; lower plasma ubiquinone levels were found in Caucasian compared to African subjects. However, the latter small group of subjects failed to demonstrate a circadian rhythm, neither in the April nor in the October analysis.  相似文献   

10.
Coenzyme Q10 (CoQ10) or ubiquinone, a redox component of the mitochondrial electron transport chains, is a powerful antioxidant and membrane stabilizer that may prevent cellular damage during myocardial ischemia and reperfusion therapy. Coenzyme Q10 has been used primarily as an adjuvant therapy for some cardiomyopathies. However, one of the main problems in CoQ10 administration is the high variability of endogenous plasma and tissue levels, which seems to be dependent on several factors. This work explores temporal 24h and seasonal variation as well as gender and racial differences in endogenous plasma ubiquinone concentration. Coenzyme Q10 measurements (quantified by HPLC-UV) of 16 healthy volunteers were done during the daytime hours of activity beginning at 09:00h one day and ending at 09:00h the next day (13 different determinations) in two distinct months, April and October, of the year. A statistically significant circadian rhythm in plasma ubiquinone concentration that includes only the fundamental 24h component was demonstrated both in the April and October data. Furthermore, the time-point means of the ubiquinone concentration in the October study were invariably higher than those obtained in the April study. No statistically significant differences were found in CoQ10 concentration between male and female subjects, both in April and in October. In addition, racial differences were demonstrated; lower plasma ubiquinone levels were found in Caucasian compared to African subjects. However, the latter small group of subjects failed to demonstrate a circadian rhythm, neither in the April nor in the October analysis.  相似文献   

11.
Fatigue is often reported after long-haul airplane flights. Hypobaric hypoxia, observed in pressurized cabins, may play a role in this phenomenon by altering circadian rhythms. In a controlled cross-over study, we assessed the effects of two levels of hypoxia, corresponding to cabin altitudes of 8000 and 12,000 ft, on the rhythm of core body temperature (CBT), a marker of circadian rhythmicity, and on subjective sleep. Twenty healthy young male volunteers were exposed for 8 h (08:00-16:00 h) in a hypobaric chamber to a cabin altitude of 8000 ft and, 4 weeks later, 12,000 ft. Each subject served as his own control. For each exposure, CBT was recorded by telemetry for two 24 h cycles (control and hypoxic exposure). After filtering out nonphysiological values, the individual CBT data were fitted with a five-order moving average before statistical group analysis. Sleep latency, sleep time, and sleep efficiency were studied by sleep logs completed every day in the morning. Our results show that the CBT rhythm expression was altered, mainly at 12,000 ft, with a significant increase of amplitude and a delay in the evening decline in CBT, associated with alterations of sleep latency. Mild hypoxia may therefore alter circadian structure and result in sleep disturbances. These results may explain in part the frequent complaints of prolonged post-flight fatigue after long flights, even when no time zones are crossed.  相似文献   

12.
It was recently reported that the circadian clock machinery controls plasma levels of factor (F) VII, the serine protease triggering blood coagulation. Here, by exploiting the mouse model, this study showed that variations of photoperiod (i.e., winter or summer conditions or simulated chronic jetlag conditions) have a strong impact on plasma FVII activity levels. Under conditions mimicking summer or winter photoperiods, FVII activity showed a clear 24 h rhythmicity. Interestingly, mean daily FVII activity levels were significantly reduced in mice exposed to summer photoperiods. Behavioral activity rhythms under both photoperiods were synchronized to LD cycles, and the amount of activity per 24 h was comparable. The authors also investigated the influence of chronic jetlag (CJL) on the FVII activity rhythms, which can be easily mimicked in mice through continuous abrupt shifts in the lighting schedule. The exposure of mice to simulated CJL of either consecutive westward or consecutive westward and eastward flights for 15 days did not abolish the behavioral activity rhythms but was associated with a period significantly different from 24 h. Intriguingly, both types of CJL exerted a strong influence on FVII activity rhythms, which were virtually suppressed. Moreover, the mean daily FVII activity was significantly lower in the CJL than in the winter photoperiod condition. Taken together, these findings in mice provide novel insights into the modulation of FVII activity levels, which might have implications for human pathophysiology.  相似文献   

13.
At monthly intervals during the year blood samples were collected every 20 min for 12 h from 4 entire and 2 prepubertally castrated adult fallow deer bucks. In the entire bucks there were seasonal changes in mean concentrations and pulse frequencies of plasma LH. Mean concentrations in late summer and autumn were 3-6 times higher than during other seasons. LH pulse frequency was low (0-1 pulses/12 h) during most of the year and increased only during the 2-month period (January and February) that marked the transition from the non-breeding season to the autumn rut. During this period there was a close temporal relationship between pulses of LH and testosterone. However, during the rutting period (March and April) episodic secretion of testosterone, manifest as surges in plasma concentrations of 4-6 h duration, was not associated with any detectable pulses in LH although mean plasma concentrations of LH remained elevated. During the rut, the surges of plasma testosterone occurred at similar times of the day. Plasma profiles in May indicated very low concentrations of LH and testosterone secretion in the immediate post-rut period. Castrated bucks exhibited highly seasonal patterns of LH secretion, with mean plasma LH concentrations and LH pulse frequency being lowest in November (early summer) and highest in February and March (late summer-early autumn). Mean concentrations and pulse frequency of LH in castrated bucks were higher than for entire bucks at all times of the year.  相似文献   

14.
The homeostatic control of physiological processes is affected by a variety of temporal programs, such as circadian rhythms, estrous cycles, and circannual rhythms. The existence of circaseptan rhythms (endogenous rhythms with the duration of a week) has been postulated but not properly verified. In this study, we compared plasma concentration of lactic acid, systolic and diastolic blood pressure, and rectal temperature in athletic horses (maintained under a weekly training schedule) with those in sedentary horses (maintained under a constant schedule throughout the week). Although exercise had robust acute effects on the measured parameters, measurements conducted early in the morning or in the evening showed significant weekly rhythmicity only in one of the parameters (plasma concentration of lactic acid) in a few animals. This rhythmicity was feeble, was present only in athletic horses, and vanished if rigorous statistical criteria were applied. In contrast, 24 h rhythmicity was significant in all parameters in all horses. We conclude that the overall 7-day pattern in physiological parameters of the horse is feeble and is caused by the weekly schedule of activity. The available evidence does not support the notion of endogenous, circaseptan rhythms.  相似文献   

15.
The present study was conducted to evaluate the effect of a 7 d continuous infusion of ropivacaine on the 24 h rhythms of body temperature, heart rate, and locomotor activity. After an initial 7 d baseline, rats were randomly divided into two groups of 4 rats each to receive ropivacaine or saline via an osmotic pump for 7 consecutive days. The pumps were removed thereafter and observed during a 7 d recovery span. The studied circadian rhythms were measured by radiotelemetry throughout each of the 7 d periods. An additional group of 4 rats was studied under the same experimental conditions to assess the plasma levels of ropivacaine on days 3 and 8 following pump implantation. Our results indicate that ropivacaine does not induce loss of the circadian rhythms of body temperature, heart rate, or locomotor activity; a prominent period of 24 h was found for all variables in all animals, before, during, and after ropivacaine treatment. However, ropivacaine treatment did modify some characteristics of the rhythms; it increased the MESOR (24 h mean) of the heart rate and locomotor activity rhythms and advanced the acrophase (peak time) of the locomotor activity circadian rhythm. The present study indicates that the circadian rhythms of heart rate and locomotor activity are modified after continuous infusion of ropivacaine, which is of particular interest, given the potential cardiotoxicity of this local anesthetic agent.  相似文献   

16.
The authors examined testis tissues and blood which were collected from free-ranging Japanese monkeys of the Takasakiyama troop during four periods in 1971 (mating season: late January-early February; early birth season: June; late birth season: August; and intermediate season between birth season and mating season: October), and studied their sexual maturation and seasonal changes in reproductive phenomena. Results of observations on the testis and plasma testosterone concentration were in agreement with each other. Except in a few cases, the testis was infantile until October at 4 years old and developed rapidly during the following two months, and spermatogenesis started in the mating season at 4 years old (in exceptional cases, it started one year earlier). After the following two-year process of sexual maturation, monkeys attained full maturation in the mating season at 6 years old. For seasonal changes in reproductive phenomena also, results of observations on the testis and the plasma testosterone were in agreement with each other. Activity of the testis repeated an annual cycle of being maximal in the mating season, regressing in the birth season, and redeveloping toward the following mating season. Such seasonal changes were noticeably observed with 4- to 6-year-old animals, which are in the process of sexual maturation.  相似文献   

17.
The transgenic TGR(mREN-2)27 rat is not only characterized by fulminant hypertension, but also by a disturbance in circadian blood pressure regulation, resulting in inverse circadian blood pressure profiles. The reasons for these alterations are not very well understood at present. We therefore investigated the circadian rhythms in several hormones participating in blood pressure regulation. From TGR and Sprague-Dawley (SPRD) control rats synchronized to 12h light and 12h dark (LD 12:12) blood was collected at different circadian times (07, 11, 15, 19, 23, 03, and 07 again, 5 rats per strain and time). The activities of plasma renin and converting enzyme, as well as plasma concentrations of corticosterone and aldosterone, were determined by radioimmunoassay (RIA). SPRD rats showed significant circadian rhythms in all variables except plasma renin activity, with maxima occurring during the day. TGR rats showed significant circadian rhythmicity in plasma renin activity and corticosterone and daily variation in aldosterone; angiotensin-converting enzyme (ACE) activity did not reach statistical significance. In TGR rats, 24h means in plasma renin activity and aldosterone were approximately sevenfold and fourfold higher, respectively, than in SPRD rats. Peak concentrations in corticosterone around 15h were more than two times higher in TGR rats than in SPRD rats, whereas no differences were observed during the night. It is concluded that, in TGR rats, the overall increase in plasma renin activity and aldosterone may contribute to the elevated blood pressure. The comparatively high levels in corticosterone and plasma renin activity during daytime may be involved in the inverse circadian blood pressure profiles in the transgenic animals. (Chronobiology International, 17(5), 645-658, 2000)  相似文献   

18.
In order to investigate the relative contribution of ACTH, the renin angiotensin and dopaminergic system to the circadian rhythm of plasma aldosterone, hormone levels were determined at hourly intervals over a 24 h span in four supine healthy men. Blood was withdrawn under basal conditions (control), after either dexamethasone, captopril or bromocriptine++ (CB-154) administration. Plasma aldosterone rhythmicity was abolished in dexamethasone treated groups but not in captopril or CB treated groups. Time dependent alterations of aldosterone regulators were analyzed by multiple regression methods at 3 hourly intervals. These results indicate that plasma aldosterone rhythmicity is predominantly under the control of ACTH whereas the renin angiotensin or dopaminergic system plays a little role. In supine, sodium repleted states, ACTH is a potent stimulus of aldosterone at 000-0600 h and 1700-1900 h clocktime, whereas during daytime renin-angiotensin is an additional regulator.  相似文献   

19.
Hematopoietic processes display 24h rhythms both in rodents and in human beings. We hypothesized these rhythms to be in part generated by a circadian oscillator within the bone marrow. The ability of murine bone marrow granulo-monocytic (GM) precursors to form colonies following colony-stimulating factor (rm GM-CSF) exposure was investigated in liquid culture samples obtained every 3 h for a span of up to 198 h. The CFU-GM count varied rhythmically over the first 4 d of culture, with a reproducible maximum in the early morning hours, similar to that observed in vivo. These experiments provide the first evidence that bone marrow progenitors sustain in vitro circadian rhythmicity, and they demonstrate the presence of a circadian time-keeping system within these cells. The results support the potential usefulness of bone marrow cultures for investigating chronopharmacologic effects of anticancer drugs and cytokines on this target system.  相似文献   

20.
Latitude dependent arrhythmicity in the circadian rhythm of oviposition of Drosophila ananassae strains originating from 8.1°N to 32.7°N was studied by inbreeding them in cycles of 12 h of light at 20 lux and 12 h of darkness. The number of inbreeding generations required to initiate arrhythmicity in oviposition rhythm was dependent on the origin of latitude of the strain. The strains from the lower latitudes became arrhythmic after notably more numbers of generations than those from the higher latitudes. This might be attributed to the higher inherent degree of oviposition rhythmicity in the F1 generation, and enhanced photic sensitivity of the circadian pacemaker mediating entrainment of oviposition rhythm of the strains from lower latitudes as compared to those from the higher latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号