首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth of Bacillus cereus NCIB 8579 was studied on four varieties of rice with and without tapé fermentation. Fermented and unfermented rice supported growth of B. cereus to 107–109cfu/g. With fermentation the pH fell and numbers of B. cereus remained high ( ca 108cfu/g) except on black glutinous rice where numbers declined. Cells added at different fermentation times survived less well as fermentation progressed and the pH fell. Once growth on rice is established, B. cereus is able to survive fermentation, probably as spores.  相似文献   

2.
White rot fungi (Coriolus hirsutus, Coriolus zonatus, and Cerrena maxima from the collection of the Komarov Botanical Institute of the Russian Academy of Sciences) and filamentous fungi (Mycelia sterilia INBI 2-26 and Trichoderma reesei 6/16) were grown on oat straw-based liquid and solid media, as well as in a bench-scale reactor, either individually or as co-cultures. All fungi grew well on solid agar medium supplemented with powdered oat straw as the sole carbon source. Under these conditions, the mould Trichoderma reesei fully suppressed the growth of all basidiomycetes studied; conversely, Mycelia sterilia neither affected the development of any of the cultures, nor did it show any substantial susceptibility to suppression by their presence. Pure solid cultures of basidiomycetes, as well as the co-culture of Coriolus hirsutus and Cerrena maxima caused a notable bleaching of the oat straw during its consumption. When grown on the surface of oat straw-based liquid medium, the basidiomycetes consumed up to 40% polysaccharides without measurable lignin degradation (a concomitant process). Under these conditions, Mycelia sterilia decomposed no more than 25% lignin in 60 days, but this was observed only after polysaccharide exhaustion and biomass accumulation. In contrast, during solid state straw fermentation, white rot fungi consumed up to 75% cellulose and 55% lignin in 83 days (C. zonarus), whereas the corresponding consumption levels for co-cultures of Mycelia sterilia and Trichoderma reesei equaled 70 and 45%, respectively (total loss of dry weight ranged from 55 to 60%). Carbon dioxide-monitored solid-state fermentation of oat straw by the co-culture of filamentous fungi was successfully performed in an aerated bench-scale reactor.  相似文献   

3.
Grifola frondosa (maitake) is an edible and medicinal mushroom. Considering its increasing popularity, there are limited references for its cultivation. Previous studies demonstrated that carpophore formation is correlated directly with mycelial biomass. The development of a mathematical model for its growth under solid‐state fermentation (SSF) may help to predict the potential of different substrates for maitake production. G. frondosa growth and basidiome development was studied, using oak sawdust and corn bran as substrates. The fungal biomass content was determined by measuring N‐acetyl‐D ‐glucosamine (NAGA). It increased steadily for the first 80 days, to a maximum in coincidence with the first fruiting (60.5 μg NAGA/mg dry sample). Two mathematical models were selected to evaluate G. frondosa development, measuring reducing sugars consumption and NAGA synthesis, as an indirect assessment of fungal growth. Both models showed a good fit between predicted and experimental data: logistic model (R2=0.8896), two‐stage model (R2=0.8878), but the logistic model required a minor number of adjustment parameters.  相似文献   

4.
5.
Fungal production of volatiles during growth on fiberglass.   总被引:1,自引:0,他引:1       下载免费PDF全文
Acoustic and thermal fiberglass insulation materials used in heating, ventilation, and air-conditioning systems were colonized with fungi in laboratory chambers. The mixed fungal population, principally Aspergillus versicolor, Acremonium obclavatum, and Cladosporium herbarum, produced odoriferous volatiles, including 2-ethyl hexanol, cyclohexane, and benzene. These volatiles may be related to poor indoor air quality and the sick building syndrome.  相似文献   

6.
7.

Background

Anaerobic digestate is the effluent from anaerobic digestion of organic wastes. It contains a significant amount of nutrients and lignocellulosic materials, even though anaerobic digestion consumed a large portion of organic matters in the wastes. Utilizing the nutrients and lignocellulosic materials in the digestate is critical to significantly improve efficiency of anaerobic digestion technology and generate value-added chemical and fuel products from the organic wastes. Therefore, this study focused on developing an integrated process that uses biogas energy to power fungal fermentation and converts remaining carbon sources, nutrients, and water in the digestate into biofuel precursor-lipid.

Results

The process contains two unit operations of anaerobic digestion and digestate utilization. The digestate utilization includes alkali treatment of the mixture feed of solid and liquid digestates, enzymatic hydrolysis for mono-sugar release, overliming detoxification, and fungal fermentation for lipid accumulation. The experimental results conclude that 5 h and 30 °C were the preferred conditions for the overliming detoxification regarding lipid accumulation of the following fungal cultivation. The repeated-batch fungal fermentation enhanced lipid accumulation, which led to a final lipid concentration of 3.16 g/L on the digestate with 10% dry matter. The mass and energy balance analysis further indicates that the digestate had enough water for the process uses and the biogas energy was able to balance the needs of individual unit operations.

Conclusions

A fresh-water-free and energy-positive process of lipid production from anaerobic digestate was achieved by integrating anaerobic digestion and fungal fermentation. The integration addresses the issues that both biofuel industry and waste management encounter—high water and energy demand of biofuel precursor production and few digestate utilization approaches of organic waste treatment.
  相似文献   

8.
The relationship between primary root growth and ethanolic fermentationwas investigated in five cultivars of germinating rice (Oryza sativa L.) seeds subjected to 48 h-anoxic stress. The anoxic stressinhibited the growth of all rice cultivars, however, there were significantdifferences in the growth among the cultivars. The stress increased alcoholdehydrogenase activities and ethanol concentrations in the roots of all ricecultivars but there were differences between cultivars in the activity and theconcentration. The ethanol concentrations in the roots were closely correlatedwith the root growth of the corresponding cultivars. These results suggest thatability to induce ethanolic fermentation may play an important role in theprimary root growth of germinating rice in anoxic condition.  相似文献   

9.
Summary The kinetics of anaerobic fermentation of rice straw to methane were studied. Rice straw was the only carbon source at influent volatile solid concentrations of 18.9 and 37.8 g/l. Semicontinous runs were carried out at 37°C in laboratory scale perfectly mixed reactors. The Contois' kinetic model constants were calculated from the experimental data. Arefrac tory coefficient was measured (R=0.374) to account for the nonbiodegradable portion of the organic matter of rice straw and incorporated into the kinetic equations. The predicted values of effluent substrate concentration, volumetric methane yield, volumetric methane production rate, and biodegradable conversion efficiency fit well with those measured experi mentally.Percent destruction values of feed constituents were measured.  相似文献   

10.
11.
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hard water stream [pH 8.0] and a soft water stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 microg liter(-1)) and phosphorus (<3 microg liter(-1)). The leaves of each species decomposed faster in the hard water stream (decomposition rates, 0.010 and 0.007 day(-1) for yellow poplar and oak, respectively) than in the soft water stream (decomposition rates, 0.005 and 0.004 day(-1) for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [(14)C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hard water stream but not in the soft water stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hard water stream (5.8 mg g(-1) day(-1) on yellow poplar leaves and 3.1 mg g(-1) day(-1) on oak leaves) than in the soft water stream (1.6 mg g(-1) day(-1) on yellow poplar leaves and 0.9 mg g(-1) day(-1) on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the soft water stream (12.8% of detrital mass) than in the hard water stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the soft water stream.  相似文献   

12.
13.
14.
Ozone exposure during growth affects the feeding value of rice shoots   总被引:2,自引:0,他引:2  
Rising tropospheric ozone concentrations have been observed in many Asian countries in recent years. Ozone pollution reduces the yield of agricultural crops but may also affect crop quality. This study aimed at estimating the effect of ozone exposure on feeding quality of rice shoots for ruminant herbivores. Rice plants from two genotypes differing in ozone tolerance were exposed to ozone at a concentration of 120 nl/l for 18 days, and feeding value was determined by chemical analyses and in vitro incubation in rumen fluid. Rice biomass was reduced by an average of 24% in the ozone treatment as compared to the control. Moreover, ozone exposure affected various feed quality parameters. Crude protein content was lower in ozone treated plants (P<0.05). Potential gas production during the in vitro incubation for 96 h also dropped (P<0.01) due to ozone treatment, indicating reduced digestibility of the plant materials. This was explained with an increase in the antinutritive components lignin (P<0.05) and phenolics (P<0.001) due to ozone exposure. An ozone tolerant genotype exhibited a more pronounced increase in phenolics, suggesting that this may constitute a stress defense mechanism. Our results suggest that ozone may affect the feeding value of cereal straws and calls for further research in this direction.  相似文献   

15.
To investigate the changes of microbial communities and influence of Phanerochaete chrysosporium during solid-state fermentation (SSF) of rice straw, phospholipid fatty acids (PLFA) and lignocellulose components were measured with periodical sampling. The results showed that the lignocellulose degrading ratios in SSF which was inoculated by P. chrysosporium and soil microorganisms were higher than those degraded by culturing a single species. The total amount of PLFAs, as an indicator of microbial biomass, reached the peak on day 6. Principal component analysis (PCA) of the PLFA compositions revealed that P. chrysosporium was well responsible for the succession of microbial community and showed that fungi were the predominant species at the end of the process. The correlation analysis between lignocellulose degrading ratio and PLFA profile in P. chrysosporium suggested that P. chrysosporium promoted lignin degrading as the main fungi with gram-positive bacteria.  相似文献   

16.
Plant symbiotic fungi (endophytes) of the genus Neotyphodium [anamorphs, asexual derivatives of Epichloë (Ascomycota: Clavicipitaceae)] often associate with grass species of the subfamily Pooideae, which includes important forage and turf species. These endophytes are known to produce a range of alkaloids that enhance their host's resistance to insects or are toxic to grazing animals. Among the alkaloids, loline alkaloids (saturated 1‐aminopyrrolizidines) are generally observed in the highest concentrations in many Neotyphodium–grass symbiotic associations, and are known to be toxic to insects but not to mammals. Some Neotyphodium‐infected grasses have enhanced resistance to rice leaf bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae), one of the major pests for rice production in Japan. Our laboratory experiments quantified the effects of purified loline (N‐formylloline) and in planta synthesis of loline alkaloids by meadow fescue [Lolium pratense (Huds.) S.J. Darbyshire (syn. Festuca pratensis Huds.)]–Neotyphodium uncinatum (Gams, Petrini & Schmidt) Glenn, Bacon & Hanlin and Italian ryegrass (Lolium multiflorum Lam.)–Neotyphodium occultans Moon, Scott & Christensen associations on the development and survival of T. caelestialium. No‐choice feeding assays with laboratory populations of the insect revealed that their growth was significantly decreased by the infected grasses, and the effect was greater for N. uncinatum than for N. occultans, in keeping with differences in N‐formylloline concentrations in the plants. Artificial feeding of N‐formylloline through feeding sachets indicated that the chemical has an adverse effect on survival of larvae, even at the lowest concentration tested (50 µg/g), which was considerably lower than the typical concentrations in many Neotyphodium–grass associations. The results confirmed the ability of Neotyphodium‐infected forage grasses to control T. caelestialium propagation in meadows, which may cause damages to nearby rice paddies.  相似文献   

17.
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 µm in diameter and capsules resistant to stripping with γ-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20–50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.  相似文献   

18.
Many cereal grains have been studied for their suitability as substrates for the fermentative production of mycotoxins. However, except for aflatoxin, wild rice has not been investigated. Hence, five mold cultures known to produce the mycotoxins ochratoxin-A, penicillic acid, patulin, vomitoxin, and zearalenone were grown on wild rice under varying conditions of moisture and temperature to determine whether this grain would serve as a suitable substrate for toxin production. Under appropriate fermentation conditions, good yields of ochratoxin-A and moderate amounts of patulin were obtained, but only small amounts of penicillic acid, vomitoxin, and zearalenone were elaborated. An extract from a sample of naturally molded wild rice contained 0.8 microgram of patulin per g of rice. The predominating mold was identified as Aspergillus clavatus. Under identical cultural conditions, this isolate and a known patulin-producing strain of A. clavatus yielded approximately equivalent amounts of the mycotoxin.  相似文献   

19.
Yeasts can incorporate a wide variety of exogenous sterols under strict anaerobiosis. Yeasts normally require oxygen for growth when exogenous sterols are limiting, as this favours the synthesis of lipids (sterols and unsaturated fatty acids). Although much is known about the oxygen requirements of yeasts during anaerobic growth, little is known about their exact sterol requirements in such conditions. We developed a method to determine the amount of ergosterol required for the growth of several yeast strains. We found that pre-cultured yeast strains all contained similar amounts of stored sterols, but exhibited different ergosterol assimilation efficiencies in enological conditions [as measured by the ergosterol concentration required to sustain half the number of generations attributed to ergosterol assimilation (P50)]. P50 was correlated with the intensity of sterol synthesis. Active dry yeasts (ADYs) contained less stored sterols than their pre-cultured counterparts and displayed very different ergosterol assimilation efficiencies. We showed that five different batches of the same industrial Saccharomyces cerevisiae ADY exhibited significantly different ergosterol requirements for growth. These differences were mainly attributed to differences in initial sterol reserves. The method described here can therefore be used to quantify indirectly the sterol synthesis abilities of yeast strains and to estimate the size of sterol reserves.  相似文献   

20.
The fermentation of rice for anka pigment production   总被引:2,自引:0,他引:2  
Optimal physical parameters of the solid state fermentation of rice to produce anka pigments and their influences on pigment production were studied. Anka pigment production, especially that of two orange anka pigments (rubropunctatin and monascorubrin), was highly sensitive to the moisture content of the rice substrate. Optimal initial moisture content of rice substrate was 24%. Pigment formation was retarded when extra water was added to the inoculated substrate during cultivation. High filling amount of rice substrate in a flask was unfavorable for pigment production. Loosening of the inoculated substrate once a day enhanced pigment production. With a high carbon dioxide level in the incubator, no orange pigments were detected. Freeze drying the fermented material produced a superior yield of anka pigments, while oven drying at 50°C for 24 h was a reasonable alternative. Journal of Industrial Microbiology & Biotechnology (2000) 25, 141–146. Received 27 December 1999/ Accepted in revised form 24 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号