首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LRP16是1个雌激素(E2)通过其受体α(ERα)诱导表达的靶基因.研究表 明,LRP16可以作为多种核受体(包括AR、ERα)的转录共激活因子.采用荧光素酶报 告检测显示,抑制LRP16基因表达显著削弱了TNF-α(10 ng/mL)介导的NF-κB转录活性;采用免疫荧光和Western印迹法研究抑制LRP16对NF-κB/p65亚基核转位的影响,结果显示,抑制LRP16表达并不能参与影响p65亚基核转位.上述结果提示,LRP16可能以核激活因子角色参与了NF-κB介导的信号途径.RT-PCR实验检测抑制LRP16基因表达对TNF-α诱导NF-κB靶基因调控作用,检测的靶基因包括IκB、A20、IL-8、 FLIP、XIAP.结果表明,在这些靶基因中只有XIAP、cIAP2产生了明显的下调趋势. 因此,LRP16是NF-κB的1个共激活因子,通过调控NF-κB与靶基因的结合能力,从而增强了NF-κB的转录活性.  相似文献   

2.
Current models of canonical Wnt signaling assume that a pathway is active if beta-catenin becomes nuclearly localized and Wnt target genes are transcribed. We show that, in Xenopus, maternal LRP6 is essential in such a pathway, playing a pivotal role in causing expression of the organizer genes siamois and Xnr3, and in establishing the dorsal axis. We provide evidence that LRP6 acts by degrading axin protein during the early cleavage stage of development. In the full-grown oocyte, before maturation, we find that axin levels are also regulated by Wnt11 and LRP6. In the oocyte, Wnt11 and/or LRP6 regulates axin to maintain beta-catenin at a low level, while in the embryo, asymmetrical Wnt11/LRP6 signaling stabilizes beta-catenin and enriches it on the dorsal side. This suggests that canonical Wnt signaling may not exist in simple off or on states, but may also include a third, steady-state, modality.  相似文献   

3.
4.
LRP5 and LRP6 comprise a subfamily of lipoprotein-receptor related proteins that function as co-receptors for Wnt proteins. Mutation of human LRP5 is responsible for osteoporosis-pseudoglioma syndrome and disruption of Lrp6 in mice causes similar effects to mutation of several different Wnt genes. We have cloned Xenopus homologues of Lrp5 and Lrp6 (Xlrp5, Xlrp6) and examined their expression during embryogenesis. Both genes are expressed maternally and ubiquitously through early development. At later stages, Xlrp5 is found in the eye, forebrain, hindbrain, branchial arches and the tip of the tail bud. Xlrp6 is expressed throughout the central nervous system, branchial arches, in the eye and otic vesicle. Both genes are also expressed at the intersomitic boundary. These results suggest roles for Wnt signaling via LRP proteins in these tissues.  相似文献   

5.
The PGC-1 coactivators are important regulators of oxidative metabolism. We previously demonstrated that LRP130 is a binding partner of PGC-1alpha, required for hepatic gluconeogenesis. LRP130 is the gene mutated in Leigh syndrome French Canadian variant, a rare neurodegenerative disease. The importance of LRP130 in other, non-hepatocyte biology remains obscure. To better understand PGC-1 coactivator function in brown fat development, we explored the metabolic role of LRP130 in brown adipocyte differentiation. We show that LRP130 is preferentially enriched in brown fat compared with white, and induced in a PGC-1-dependent manner during differentiation. Despite intact PGC-1 coactivator expression, brown fat cells deficient for LRP130 exhibit attenuated expression of several genes characteristic of brown fat, including uncoupling protein 1. Oxygen consumption studies support a specific defect in proton leak due to attenuated uncoupling protein 1 expression. Notably, brown fat cell development common to both PGC-1 coactivators is governed by LRP130. Conversely, the cAMP response controlled by PGC-1alpha is not regulated by LRP130. These data implicate LRP130 in brown fat cell development and differentiation.  相似文献   

6.
Wnt ligands conduct their functions in canonical Wnt signaling by binding to two receptors, the single transmembrane low density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) and seven transmembrane (7TM) Frizzled receptors. Subsequently, phosphorylation of serine/threonine residues within five repeating signature PPPSP motifs on LRP6 is responsible for LRP6 activation. GSK3β, a cytosolic kinase for phosphorylation of a downstream effector β-catenin, was proposed to participate in such LRP6 phosphorylation. Here, we report a new class of membrane-associated kinases for LRP6 phosphorylation. We found that G protein-coupled receptor kinases 5 and 6 (GRK5/6), traditionally known to phosphorylate and desensitize 7TM G protein-coupled receptors, directly phosphorylate the PPPSP motifs on single transmembrane LRP6 and regulate Wnt/LRP6 signaling. GRK5/6-induced LRP6 activation is inhibited by the LRP6 antagonist Dickkopf. Depletion of GRK5 markedly reduces Wnt3A-stimulated LRP6 phosphorylation in cells. In zebrafish, functional knock-down of GRK5 results in reduced Wnt signaling, analogous to LRP6 knock-down, as assessed by decreased abundance of β-catenin and lowered expression of the Wnt target genes cdx4, vent, and axin2. Expression of GRK5 rescues the diminished β-catenin and axin2 response caused by GRK5 depletion. Thus, our findings identify GRK5/6 as novel kinases for the single transmembrane receptor LRP6 during Wnt signaling.  相似文献   

7.
Molecular changes involved in cell differentiation are only partially known. Circulating inflammatory cells need to differentiate to perform specialized functions in target tissues. Here, we hypothesized that low‐density lipoprotein receptor–related protein 5 (LRP5) is involved, through its participation in the canonical Wnt/β‐catenin signalling, in the differentiation process of monocytic cells. To this aim, we characterized differentiation mechanisms of HL60 cells and primary human monocytes. We show that silencing the LRP5 gene increased differentiation of HL60 cells and human monocytes, suggesting that LRP5 signalling abrogates differentiation. We demonstrate that the mechanisms behind this blockade include sequestration of β‐catenin at the cellular membrane, inhibition of the Wnt signalling and increase of apoptosis. We further demonstrate the involvement of LRP5 and the Wnt/β‐catenin signalling in the process because cellular differentiation can be rescued by the addition of downstream Wnt target genes to the monocytic cells.  相似文献   

8.
Mutations in the low-density lipoprotein receptor-related protein 5 gene (LRP5) cause autosomal recessive osteoporosis-pseudoglioma syndrome (OPPG). We sequenced the coding exons of LRP5 in 37 probands suspected of having OPPG on the basis of the co-occurrence of severe congenital or childhood-onset visual impairment with bone fragility or osteoporosis recognized by young adulthood. We found two putative mutant alleles in 26 probands, only one mutant allele in 4 probands, and no mutant alleles in 7 probands. Looking for digenic inheritance, we sequenced the genes encoding the functionally related receptor LRP6, an LRP5 coreceptor FZD4, and an LRP5 ligand, NDP, in the four probands with one mutant allele, and, looking for locus heterogeneity, we sequenced FZD4 and NDP in the seven probands with no mutations, but we found no additional mutations. When we compared clinical features between probands with and without LRP5 mutations, we found no difference in the severity of skeletal disease, prevalence of cognitive impairment, or family history of consanguinity. However, four of the seven probands without detectable mutations had eye pathology that differed from pathology previously described for OPPG. Since many LRP5 mutations are missense changes, to differentiate between a disease-causing mutation and a benign variant, we measured the ability of wild-type and mutant LRP5 to transduce Wnt and Norrin signal ex vivo. Each of the seven OPPG mutations tested, had reduced signal transduction compared with wild-type mutations. These results indicate that early bilateral vitreoretinal eye pathology coupled with skeletal fragility is a strong predictor of LRP5 mutation and that mutations in LRP5 cause OPPG by impairing Wnt and Norrin signal transduction.  相似文献   

9.
The luciferase reporter phages (LRP) show great promise for diagnostic mycobacteriology. Though conventional constructs developed from lytic phages such as D29 and TM4 are highly specific, they lack sensitivity. We have isolated and characterized Che12, the first true temperate phage infecting M. tuberculosis. Since the tuberculosis (TB) cases among HIV infected population result from the reactivation of latent bacilli, it would be useful to develop LRP that can detect dormant bacteria. During dormancy, pathogenic mycobacteria switch their metabolism involving divergent genes than during normal, active growth phase. Since the promoters of these genes can potentially function during dormancy, they were exploited for the construction of novel mycobacterial luciferase reporter phages. The promoters of hsp60, isocitrate lyase (icl), and alpha crystallin (acr) genes from M. tuberculosis were used for expressing firefly luciferase gene (FFlux) in both Che12 and TM4 phages and their efficiency was evaluated in detecting dormant bacteria from clinical isolates of M. tuberculosis. These LRP constructs exhibited detectable luciferase activity in dormant as well as in actively growing M. tuberculosis. The TM4 ts mutant based constructs showed about one log increase in light output in three of the five tested clinical isolates and in M. tuberculosis H37Rv compared to conventional lytic reporter phage, phAE129. By refining the LRP assay format further, an ideal rapid assay can be designed not only to diagnose active and dormant TB but also to differentiate the species and to find their drug susceptibility pattern.  相似文献   

10.
11.
Purpose: To develop a lipoprotein receptor-related protein 1B (LRP1B) gene mutation-based prognostic model for hepatocellular carcinoma (HCC) patients risk prediction. Methods: The LRP1B gene mutation rate was calculated from HCC patient samples. Meanwhile, differentially expressed genes according to LRP1B mutant were screened out for prognostic model establishment. Based on this innovative model, HCC patients were categorized into high- and low-risk groups. The immune status including immune cell infiltration ratio and checkpoints have been explored in two groups. The functions of LRP1B and risk factors in the model were verified using both in vivo and in vitro experiments. Results: It could be demonstrated that LRP1B was a potential negative predictor for HCC patients prognosis with high mutation frequency. The functions of LRP1B were verified with ELISA and Quantitative Real-time PCR method based on clinic-recruited HCC participants. Eleven genes displayed significant differences according to LRP1B status, which could better predict HCC patient prognosis. The functions of these genes were examined using HCC cell line HCCLM3, suggesting they played a pivotal role in determining HCC cell proliferation and apoptosis. From the immune cell infiltration ratio analysis, there was a significant difference in the infiltration degree of seven types of immune cells and two immune checkpoints between high- and low-risk HCC patients. Conclusion: The present study hypothesized a potential prognostic biomarker and developed a novel LRP1B mutation-associated prognostic model for HCC, which provided a systematic reference for future understanding of clinical research.  相似文献   

12.
Mice deficient in receptor-associated protein (RAP) were phenotypically normal, but in contrast to results previously reported in RAP(-/-) mice, nearly 50% of the offspring died at or shortly after birth. To attempt to determine the reason for this, we analyzed the regulation of expression of genes involved in apolipoprotein E (apoE)-based mechanisms in RAP-deficient mice and compared this to results in mice deficient in low density lipoprotein receptor (LDLR) or apoE. The major finding concerned a large increase in hepatic lipoprotein receptor-related protein (LRP) mRNA and LDLR mRNA levels in pregnant RAP knockout mice. This is in contrast to the down-regulation of LRP mRNA and LDLR mRNA, which is normally seen in wild-type mice. Also in LDLR knockout mice, a significant up-regulation in expression of LRP mRNA was demonstrated. In apoE knockout mice, hepatic LRP mRNA did not change significantly, while hepatic LDLR mRNA expression was increased. In placenta and uterus, the deficiency of RAP did not markedly affect the expression of LRP and LDLR. Lipoprotein lipase mRNA and apoE mRNA increased during pregnancy in all mice, independent of their genetic status. The current study does not directly explain the increased mortality of RAP(-/-) pups. The data demonstrate, however, important relative changes in expression of the genes analyzed, an indication that LRP and LDLR play an important role in lipid metabolism during pregnancy.  相似文献   

13.
In the central nervous system (CNS), fast neuronal signals are facilitated by the oligodendrocyte-produced myelin sheath. Oligodendrocyte turnover or injury generates myelin debris that is usually promptly cleared by phagocytic cells. Failure to remove dying oligodendrocytes leads to accumulation of degraded myelin, which, if recognized by the immune system, may contribute to the development of autoimmunity in diseases such as multiple sclerosis. We recently identified low density lipoprotein receptor-related protein-1 (LRP1) as a novel phagocytic receptor for myelin debris. Here, we report characterization of the LRP1 interactome in CNS myelin. Fusion proteins were designed corresponding to the extracellular ligand-binding domains of LRP1. LRP1 partners were isolated by affinity purification and characterized by mass spectrometry. We report that LRP1 binds intracellular proteins via its extracellular domain and functions as a receptor for necrotic cells. Peptidyl arginine deiminase-2 and cyclic nucleotide phosphodiesterase are novel LRP1 ligands identified in our screen, which interact with full-length LRP1. Furthermore, the extracellular domain of LRP1 is a target of peptidyl arginine deiminase-2-mediated deimination in vitro. We propose that LRP1 functions as a receptor for endocytosis of intracellular components released during cellular damage and necrosis.  相似文献   

14.
15.
Apolipoprotein E (apoE), an apoprotein involved in lipid transport in both the plasma and within the brain, mediates the binding of lipoproteins to members of the low density lipoprotein (LDL) receptor family including the LDL receptor and the LDL receptor-related protein (LRP). ApoE/LRP interactions may be particularly important in brain where both are expressed at high levels, and polymorphisms in the apoE and LRP genes have been linked to AD. To date, only apoE-enriched lipoproteins have been shown to be LRP ligands. To investigate further whether other, more lipid-poor forms of apoE interact with LRP, we tested whether lipid-free apoE in the absence of lipoprotein particles interacts with its cell-surface receptors. No detectable lipid was found associated with bacterially expressed and purified apoE either prior to or following incubation with cells when analyzed by electrospray ionization mass spectrometry. We found that the degradation of lipid-poor (125)I-apoE was significantly higher in wild type as compared to LRP-deficient cells, and was inhibited by receptor-associated protein (RAP). In contrast, (125)I-apoE-enriched beta-VLDL was degraded by both LRP and the LDL receptor. When analyzed via a single cycle of endocytosis, (125)I-apoE was internalized prior to its subsequent intracellular degradation with kinetics typical of receptor-mediated endocytosis. Thus, we conclude that a very lipid-poor form of apoE can be catabolized via cell surface LRP, suggesting that the conformation of apoE necessary for recognition by LRP can be imposed by situations other than an apoE-enriched lipoprotein.  相似文献   

16.
Low density lipoprotein receptor-related protein 6 (LRP6) and its homologue LRP5 serve as Wnt co-receptors that are essential for the Wnt/beta-catenin pathway. Wnt activation of LRP6 leads to recruitment of the scaffolding protein Axin and inhibition of Axin-mediated phosphorylation/destruction of beta-catenin. We showed that five conserved PPPSP motifs in the LRP6 intracellular domain are required for LRP6 function, and mutation of these motifs together abolishes LRP6 signaling activity. We further showed that Wnt induces the phosphorylation of a prototypic PPPSP motif, which provides a docking site for Axin and is sufficient to transfer signaling activity to a heterologous receptor. However, the activity, regulation, and functionality of multiple PPPSP motifs in LRP6 have not been characterized. Here we provide a comprehensive analysis of all five PPPSP motifs in LRP6. We define the core amino acid residues of a prototypic PPPSP motif via alanine scanning mutagenesis and demonstrate that each of the five PPPSP motifs exhibits signaling and Axin binding activity in isolation. We generated two novel phosphorylation-specific antibodies to additional PPPSP motifs and show that Wnt induces phosphorylation of these motifs in the endogenous LRP6 through glycogen synthase kinase 3. Finally, we uncover the critical cooperativity of PPPSP motifs in the full-length LRP6 by demonstrating that LRP6 mutants lacking a single PPPSP motif display compromised function, whereas LRP6 mutants lacking two of the five PPPSP motifs are mostly inactive. This cooperativity appears to reflect the ability of PPPSP motifs to promote the phosphorylation of one another and to interact with Axin synergistically. These results establish the critical role and a common phosphorylation/activation mechanism for the PPPSP motifs in LRP6 and suggest that the conserved multiplicity and cooperativity of the PPPSP motifs represents a built-in amplifier for Wnt signaling by the LRP6 family of receptors.  相似文献   

17.
Lateral root primordium (LRP) formation in the four vascular poles of 7- to 10-day-old loblolly pine ( Pinus taeda L.) seedlings was promoted by the auxin α-naphthalene acetic acid (NAA) and occurred closer to the root tip than in the controls. These observations support a role of auxin located within the vascular cylinder in the development of LRP. Adjacent LRP almost never occurred in the same vascular pole, but NAA increased the probability that this would happen by two- to six-fold. Expression of genes for α-expansin was induced by auxin in hypocotyls but occurred spontaneously in primary roots. In situ localization revealed that expansin was expressed in the vascular parenchyma where LRP formed spontaneously in roots, and where adventitious root meristems formed in auxin-treated hypocotyls. Expansin expression was not uniform in the LRP-forming zone of the primary root. The number of cells exhibiting expansin expression longitudinally occurred in distinct peaks, which were more frequent after auxin treatment. These peaks may reflect non-uniform distribution of auxin in the stele or localization of cells with increased sensitivity to auxin. However, LRP were spaced about 10-fold further apart than the peaks of expansin expression. Therefore, localized peak expansin expression did not always predict the location of LRP. We speculate that other factors must interact with locally high auxin concentrations to specify the location of LRP.  相似文献   

18.
Wei W  Lu Q  Chaudry GJ  Leppla SH  Cohen SN 《Cell》2006,124(6):1141-1154
Toxins produced by Bacillus anthracis and other microbial pathogens require functions of host cell genes to yield toxic effects. Here we show that low density lipoprotein receptor-related protein 6 (LRP6), previously known to be a coreceptor for the Wnt signaling pathway, is required for anthrax toxin lethality in mammalian cells. Downregulation of LRP6 or coexpression of a truncated LRP6 dominant-negative peptide inhibited cellular uptake of complexes containing the protective antigen (PA) carrier of anthrax toxin moieties and protected targeted cells from death, as did antibodies against epitopes in the LRP6 extracellular domain. Fluorescence microscopy and biochemical analyses showed that LRP6 enables toxin internalization by interacting at the cell surface with PA receptors TEM8/ATR and/or CMG2 to form a multicomponent complex that enters cells upon PA binding. Our results, which reveal a previously unsuspected biological role for LRP6, identify LRP6 as a potential target for countermeasures against anthrax toxin lethality.  相似文献   

19.
Neurological disorders develop in most people infected with human immunodeficiency virus type 1 (HIV-1). However, the underlying mechanisms remain largely unknown. Here we report that binding of HIV-1 transactivator (Tat) protein to low-density lipoprotein receptor-related protein (LRP) promoted efficient uptake of Tat into neurons. LRP-mediated uptake of Tat was followed by translocation to the neuronal nucleus. Furthermore, the binding of Tat to LRP resulted in substantial inhibition of neuronal binding, uptake and degradation of physiological ligands for LRP, including alpha2-macroglobulin, apolipoprotein E4, amyloid precursor protein and amyloid beta-protein. In a model of macaques infected with a chimeric strain of simian-human immunodeficiency virus, increased staining of amyloid precursor protein was associated with Tat expression in the brains of simian-human immunodeficiency virus-infected macaques with encephalitis. These results indicate that HIV-1 Tat may mediate HIV-1-induced neuropathology through a pathway involving disruption of the metabolic balance of LRP ligands and direct activation of neuronal genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号