首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Cytochrome alpha 3 in whole-cell suspensions of the fission yeast Schizosaccharomyces pombe reacted in the reduced form with CO to give a photodissociable CO complex with absorption maxima at 429, 543 and 591 nm in CO-liganded reduced-minus-reduced difference spectra. 2. Other CO-bound haemoproteins, cytochromes P-420 and P-450, were not photodissociated under the conditions employed. 3. Measurements of the rates of reassociation of CO with cytochrome alpha 3 after flash photolysis over the temperature range from -101 to -109 degrees C gave a value for Eact. of 28.6 kJ/mol. 4. Between -94 and -106 degrees C, O2 reacted with cytochrome oxidase in intact cells to give an oxygenated intermediate (compound A). 5. At -70 degrees C compound A was converted into a second spectrally distinct intermediate (compound B). 6. Electron transport, indicated by the oxidation of cytochromes alpha + alpha 3 and cytochrome c, did not occur until the temperature was raised to -50 degrees C. 7. At room temperature cytochfome oxidase was oxidized to 50% of its steady-state concentration by 0.35 microM-O2.  相似文献   

2.
Action of rat liver cathepsin L on collagen and other substrates.   总被引:6,自引:4,他引:2       下载免费PDF全文
1. Mitochondria-enriched fractions of the ciliate protozoan Tetrahymena pyriformis ST contained CO-reacting cytochromes b560 and a620. 2. A non-photodissociable oxygen-containing compound of cytochrome a620 was formed in whole cell suspensions at -114 degrees C after photolysis of CO in the presence of 200 microM-O2. 3. Electron transport, indicated by the oxidation of cytochrome a620 and cytochrome c, occurred at temperatures higher than -72 degrees C. 4. Photochemical action spectra for the relief of respiratory inhibition of whole cells by CO obtained by using a liquid dye laser indicate that the only CO-reacting terminal oxidase detectable was cytochrome a620. 5. It is concluded that the alternative electron transport chains in this organism utilize non-cytochrome terminal oxidases.  相似文献   

3.
Intact spinach chloroplasts, capable of high rates of photochemical oxygen evolution with CO2 as electron acceptor (120-350 mumol O2 mg chlorophyll-1 h-1) were examined for cytochrome redox changes. The response of the cytochromes in intact chloroplasts to oxidants and reductants appears to be governed by the permeability of the chloroplast envelope. The low potential cytochromes (b-559LP and b-563) were more slowly reduced at 25 degrees C by dithionite than is the case with broken chloroplasts. At 0 degrees C, the reduction of the low potential cytochromes in intactchloroplasts was extremely slow. The chloroplast envelope is impermeable to ferricyanide, slowly permeable to ascorbate and rapidly permeable to reduced dichlorophenolindophenol. Light-induced redox changes of cytochrome b-563 in intact chloroplasts were examined both at 0 degrees and 25 degrees C. A red/far-red antagonism on the redox changes of cytochrome b-563 was observed at 0 degrees C under anaerobic conditions. 3-(3,4-dichlorophenyl)-1, 1-dimethlyurea (DCMU) inhibited the photoreduction of cytochrome b-563 in red light following far-red illumination. The photooxidation of cytochrome b-563 under anaerobic conditions was not influenced by DCMU or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). The photoreduction of cytochrome b-563 under aerobic conditions was much less efficient than its photooxidation under anaerobic conditions. Developing pea chloroplasts showed much greater light-induced redox changes of cytochrome b-563 than did intact spinach chloroplasts. Our data are consistent with the view that cytochrome b-563 functions on a cyclic pathway around Photosystem I, but it appears that cyclic flow is sensitive to the relative poising of the redox levels of cytochrome b-563 and the components of the non-cylic pathway.  相似文献   

4.
The ability of various native and modified cytochromes c to transfer electrons to cytochrome oxidase is compared in cytochrome c depleted beef heart mitochondrial particles. The kinetics are followed at -49 degrees C after the reaction is initiated by photolysis of the CO compound of cytochrome oxidase in the presence of oxygen. Horse, human, yeast iso-2, and carboxydinitrophenyl (CDNP)-lysine-60 horse cytochromes c all give initial rates of electron transfer that are equal to those observed in whole beef mitochondria. Euglena, CDNP-lysine-72, and CDNP-lysine-13 horse cytochromes c give rates about one-tenth that of whole mitochondria. These rates were independent of the concentration of cytochrome c. Since the inhibited cytochromes c, but not the active proteins, had previously been shown to have lowered affinity for cytochrome oxidase, the results indicate that the structural characteristics important for the association of cytochrome c and oxidase are also essential for achieving normal rates of electron transfer within the complex once formed.  相似文献   

5.
1. The reactions of cytochrome omicron in intact cells of aerobically grown Escherichia coli with O2 and CO have been studied at low temperature. 2. Flash photolysis of CO-liganded cells in the presence of O2 and at temperatures between -79 and -102 degrees C results in the oxidation of kinetically heterogeneous beta-type cytochromes (including cytochrome omicron), but not of cytochrome d. 3. The reaction of reduced cytochrome omicron with O2 involves O2 binding to give intermediate(s) with spectral characteristics similar to that of the reduced oxidase-CO complex. Observation in the alpha-region suggests that unexplained ligand dissociation accompanies the initial O2 binding. 4. At temperatures below -98 degrees C, an 'end point' in the reaction is reached; further reaction and oxidation of cytochrome omicron occurs on raising the temperature. 5. There is a linear relationship between the rate of formation of the oxygen compound and the O2 concentration up to 0.5 mM. The second-order constant for its formation (k+1) is 0.91 M-1.S-1 at -101 degrees C. The reaction is not readily reversible, the value of k-1 being 1.4 X 10(-5) S-1 and the kd 1.5 X 10(-5) M. 6. The energy of activation for this reaction at low temperatures is 29.9kJ (7.1 kcal)/mol. 7. The reaction with O2 is distinguished from that with CO by the markedly lower velocity and high photolytic reversibility of the latter. 8. Comparisons are drawn between the intermediate(s) in the O2 reaction of cytochrome omicron in E. coli and those identified in other bacteria and in the reaction of cytochrome aa3 with O2.  相似文献   

6.
1. An antimycin-insensitive NADH-cytochrome c oxidoreductase (E.C. 1.6.99.3) activity can be demonstrated in the membrane of lutoids isolated from the latex of Hevea brasiliensis. This electron transport system can also use ferricyanide as an electron acceptor, but is unable to oxidize NADPH. 2. Two beta-type cytochromes are present in the membranes. Cytochrome beta563 is partially reduced by NADH and ascorbate, but is not reducible by NADPH. It shows a double peak at 555 and 561 nm at 77 degrees K. A second cytochrome, cytochrome beta561, seems to be reducible by hydrosulfite only. 3. In the reduced state, these cytochromes do not combine with CO. The occurrence of cytochrome P-450 could not be demonstrated. 4. The role of the NADH oxidation system is considered in relation to the biosynthesis of polyisoprene compounds in the latex.  相似文献   

7.
The effects of aeration on the growth and cytochrome patterns of thermophilic bacterium PS3 were studied; bacteria grown with strong aeration synthesized cytochromes c, b, and aa3, while those grown with low aeration, showing non-exponential growth, synthesized higher amounts of cytochromes c and b including o, and a lower amount of cytochrome a (a3). The CO-difference spectra indicated that the terminal oxidase was cytochrome aa3 for high aeration conditions and the cytochrome o for low aeration conditions. Cytochrome o can be solubilized by Triton X-100 from the membrane fraction of bacteria grown under oxygen-limited conditions. The carbon monoxide complex of cytochrome o, obtained by exposing this extract to CO, was photolyzed and the subsequent rebinding of CO was analyzed; it followed first order kinetics with a rate constant of around 8 s-1 at 25 degrees C. At liquid nitrogen temperature, CO-rebinding did not occur. The CO-difference spectrum of purified cytochrome oxidase sample from the bacteria grown with strong aeration (Sone, N., et al. (1979) FEBS Lett. 106, 39-42) revealed the presence of a small amount of a cytochrome o-like pigment besides cytochrome aa3. Analysis of the CO complexes of these chromophores showed rate constants of 29-30 s-1 for cytochrome aa3 and 35-42 s-1 for the o-like pigment, indicating that the cytochrome o-like pigment contaminating the purified cytochrome oxidase preparation was not typical cytochrome o.  相似文献   

8.
We investigated the effect of temperature and irradiance on leaf respiration (R, non-photorespiratory mitochondrial CO(2) release) of snow gum (Eucalyptus pauciflora Sieb. ex Spreng). Seedlings were hydroponically grown under constant 20 degrees C, controlled-environment conditions. Measurements of R (using the Laisk method) and photosynthesis (at 37 Pa CO(2)) were made at several irradiances (0-2,000 micromol photons m(-2) s(-1)) and temperatures (6 degrees C-30 degrees C). At 15 degrees C to 30 degrees C, substantial inhibition of R occurred at 12 micromol photons m(-2) s(-1), with maximum inhibition occurring at 100 to 200 micromol photons m(-2) s(-1). Higher irradiance had little additional effect on R at these moderate temperatures. The irradiance necessary to maximally inhibit R at 6 degrees C to 10 degrees C was lower than that at 15 degrees C to 30 degrees C. Moreover, although R was inhibited by low irradiance at 6 degrees C to 10 degrees C, it recovered with progressive increases in irradiance. The temperature sensitivity of R was greater in darkness than under bright light. At 30 degrees C and high irradiance, light-inhibited rates of R represented 2% of gross CO(2) uptake (v(c)), whereas photorespiratory CO(2) release was approximately 20% of v(c). If light had not inhibited leaf respiration at 30 degrees C and high irradiance, R would have represented 11% of v(c). Variations in light inhibition of R can therefore have a substantial impact on the proportion of photosynthesis that is respired. We conclude that the rate of R in the light is highly variable, being dependent on irradiance and temperature.  相似文献   

9.
Clostridium thermoaceticum and Clostridium thermoautotrophicum contain the same menaquinone. Its structure, determined by thin-layer chromatography, UV absorption spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy, was found to be MK-7 (2-methyl-3-heptaprenyl-1,4-naphthoquinone). The menaquinone is located in the cytoplasmic membranes and is involved in redox reactions of two b-type cytochromes present in the clostridia. These reactions were studied with right-side-out membranes prepared from C. thermoautotrophicum by using CO as an electron donor. In intact membranes, both cytochromes were reduced, whereas after inactivation of the menaquinone by exposure of the membranes to UV irradiation, reduction of the low-potential cytochrome (Eo', -200 mV) but not of the high-potential cytochrome (Eo', -48 mV) occurred. The reduction of the high-potential cytochrome in UV-irradiated membranes was restored following the addition of oxidized menaquinone and with an excess of CO. The addition of oxidized menaquinone to reduced membranes resulted initially in a preferential oxidation of the low-potential cytochrome. The results obtained indicate that the menaquinone acts between the two b-type cytochromes in an electron transport chain.  相似文献   

10.
Thermal denaturation of cytochromes c of horse, cow, and Candida krusei in aqueous guanidine hydrochloride in the neutral pH region was studied by means of absorption and optical rotation measurements. The values of standard free energy change upon denaturation were estimated over the temperature range from 3 to 51 degrees C. Large differences in the heat capacity of the native and denatured states amounting to several kcal/mol-deg were obtained for all three kinds of cytochromes c. These lead to a change in the sign of both the enthalpy and entropy change of denaturation, with maximum stability of the native state at 12 degrees C for horse and bovine cytochromes c and at 9 degrees C for Candida krusei.  相似文献   

11.
We studied the colligative cryoprotective effect of ethanol (EtOH) in preserving the isolated rat heart frozen at -3.4 degrees C or unfrozen at -1.4 degrees C. Addition of 4.7% (v/v) EtOH to a cardioplegic solution, CP-14, raised the osmolality from 280 to 1100 mOsm/kg H2O and lowered the melting point from -0.52 to -2.1 degrees C. Freezing of the cardiac explant at -3.4 degrees C for 6 h resulted in 34.3 +/- 1.9% of the tissue water as ice; recovery of cardiac output (CO) was 50%. Polyethylene glycol, which at 5% (w/v) has been shown to cryoprotect the hearts during freezing at -1.4 degrees C, did not improve the protective effect of 4.7% EtOH. CP-14 + 4.7% EtOH did not freeze at -1.4 degrees C. After 6 h storage, CO in hearts flushed with CP-14 + 4.7% EtOH oxygenated with 95% O2/5%CO2 returned to almost control level and was much higher than that in hearts flushed with 100% O2 saturated-CP-14 + 4.7% EtOH. Storage of 8 and 12 h reduced CO to 87 +/- 9 and 60 +/- 5% of control. By employing EtOH as a colligative cryoprotectant, we preserved the adult mammalian heart frozen at -3.4 degrees C or unfrozen at -1.4 degrees C, suggesting that this small molecular weight, penetrating substance may be a suitable cryoprotectant for long-term storage of the cardiac explant at high subzero temperatures.  相似文献   

12.
Exposure to high concentrations of carbon dioxide (CO2) killed adult and nymphal stages of the oriental cockroach Blatta orientalis L. (Dictyoptera: Blattidae) with LT50 values of 11.5-16.2 h for 60% CO2 in air and 5.7-7.1 h for 100% CO2 at 20 degrees C; corresponding LT50s at 28 degrees C were 2.8-4.6 h for 60% CO2 in air and 2.3-3.6 h for 100% CO2. Complete kill of mobile stages was obtained within 24 h using 60% CO2 at 20 degrees C. Survivors of treatments with 100% CO2 at 28 degrees C remained completely paralysed for up to 3 days post-treatment and took up to 5 days to regain normal movement, but adult females then resumed production of oothecae with no significant loss in fecundity. Oothecae 5 or 30 days after deposition required 60-84 h exposure to 60% CO2 at 20 degrees C to prevent emergence of nymphs but less time using 100% CO2 at 28 degrees C. At 28 degrees C, when adult females were treated with 100% CO2 and 52% r.h. for 6 h (giving 100% mortality) loss of weight was significantly greater than that following treatment with air at 52% r.h. for 6 h (giving no mortality). However, significantly greater weight loss also occurred when they were treated with dried air (< 10% r.h.) for 6 h, also with no mortality. The toxicity of CO2 to mobile stages of the oriental cockroach appeared to result from irreversible effects on the nervous system, rather than from water loss during exposure.  相似文献   

13.
N Sone  A Naqui  C Kumar    B Chance 《The Biochemical journal》1984,221(2):529-533
Reaction of O2 and CO with a caa3-type terminal cytochrome oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 grown with high aeration was studied at low temperatures. The CO recombination at the temperature range studied (-50 degrees C to -80 degrees C) followed first-order kinetics with an activation energy of 29.3 kJ/mol (7.0 kcal/mol). In the presence of O2 at -113 degrees C the photolysed reduced form binds O2 to form an 'oxy' intermediate similar to Compound A. At a higher temperature (-97 degrees C) another intermediate, similar to Compound B, is formed as a result of electron transfer from the enzyme to the liganded O2.  相似文献   

14.
CO(2) release patterns of three drywood termite species were investigated using flow-through respirometry techniques. Eight hours of real-time CO(2) release data were recorded for pseudergates of Cryptotermes cavifrons Banks, Incisitermes minor (Hagen), and I. tabogae (Snyder) at 20-40 degrees C. Cyclic release of CO(2) was observed in 20-90% of C. cavifrons, 70-100% of I. tabogae, and 87-100% of I. minor pseudergates. Variability of the recordings (calculated as the coefficient of variability or CV) was used to estimate the level of cycling in each recording. CV ranged from 14.53+/-2.57 (40 degrees C) to 32.33+/-1.12% (30 degrees C) in C. cavifrons, 20.24+/-2.44 (35 degrees C) to 67.3+/-10.3% (20 degrees C) in I. minor, and 15.9+/-1.46 (35 degrees C) to 34.15+/-6.18% (20 degrees C) in I. tabogae. The relationship between temperature and CV for each species was modeled using non-linear regression. CV of both Incisitermes spp. decreased exponentially with temperature, while C. cavifrons CV followed a Gaussian model, indicating an optimal cycling temperature of approximately 30 degrees C. Mean V.CO(2) values were determined for each species as a function of temperature, and ranged from 0.1 ml CO(2) g(-1) h(-1) (I. minor at 20 degrees C) to 0.8 ml CO(2) g(-1) h(-1) (C. cavifrons at 40 degrees C). For all three species, V.CO(2) significantly increased linearly with temperature. Colinearity tests indicated that different models described the V.CO(2) relationship with temperature for both genera. Q(10) values for V.CO(2) over the range of 20-40 degrees C were 1.92 for I. minor, 1.66 for I. tabogae, and 1.62 for C. cavifrons pseudergates.  相似文献   

15.
Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.  相似文献   

16.
In this study, reduced levels of ventilation were applied to small clusters of bees under controlled conditions to determine whether lowered ventilation rates and the resulting increased levels of CO2 could increase the mortality rates of varroa. Two experiments were performed at two different temperatures (10 degrees C and 25 degrees C). Both experiments compared varroa mortality among high (360 liters/h), medium (42.5 liters/h), and low (14 liters/h) rates of ventilation. The clusters of bees (approximately 300 worker bees) in bioassay cages with 40 introduced varroa mites were placed into self-contained glass chambers and were randomly assigned to one of the three ventilation treatments within incubators set at either of the two temperatures. Bee and varroa mortality and the levels of CO2 concentration were measured in each of the experimental chambers. In both experiments, CO2 levels within the chamber increased, with a decrease in ventilation with CO2 reaching a maximum of 1.2 +/- 0.45% at 10 degrees C and 2.13 +/- 0.2% at 25 degrees C under low ventilation. At high ventilation rates, CO2 concentration in chamber air was similar at 10 degrees C (1.1 +/- 1.5%) and 25 degrees C (1.9 +/- 1.1%). Both humidity and CO2 concentration were higher at 25 degrees C than at 10 degrees C. Bee mortality was similar within all ventilation rate treatments at either 10 degrees C (11.5 +/- 2.7-19.3 +/- 3.8%) or 25 degrees C (15.2 +/- 1.9-20.7 +/- 3.5%). At 10 degrees C, varroa mortality (percentage dead) was greatest in the high ventilation treatment (12.2 +/- 2.1%), but only slightly higher than under low (3.7 +/- 1.7%) and medium ventilation (4.9 +/- 1.6%). At 25 degrees C, varroa mortality was greatest under low ventilation at 46.12 +/- 7.7% and significantly greater than at either medium (29.7 +/- 7.4%) or low ventilation (9.5 +/- 1.6.1%). This study demonstrates that at 25 degrees C, restricted ventilation, resulting in high levels of CO2 in the surrounding environment of small clusters of honey bees, has the potential to substantially increase varroa mortality.  相似文献   

17.
The microbial development on fillets of herring from the Baltic Sea was studied at temperatures from 0-15 C in air or 100% carbon dioxide (96-100% CO2). The shelf-life of the fillets , defined as the time for the 'total aerobic count' to reach 1 X 10(7) c.f.u./g increased with decreased temperature from 1 d at 15 degrees C to 7 d at 0 degrees C (air). The corresponding values in CO2 were 3 d and 33 d, respectively. The initial flora of the herring fillets was dominated by Alteromonas putrefaciens and Pseudomonas spp. and so was the spoilage flora after storage in air (together 62-95% of the flora: all temperatures). Alteromonas putrefaciens predominated slightly at 2 degrees C to 15 degrees C, while Pseudomonas spp. dominated at 0 degrees C. The Pseudomonas flora was mainly split between Ps. fragi , Ps. fluorescens and a heterogenous group of unidentified Pseudomonas spp. The proportions were not influenced by temperature. In 100% CO2 at the time of spoilage the flora consisted of a significant number of Lactobacillus spp. Below 4 C the domination was almost complete while at 10 degrees C and 15 degrees C. Enterobacteriaceae, Vibrionaceae and Alt. putrefaciens was also found. It was concluded that the microbiological shelf-life of herring fillets is improved by refrigeration storage in 100% CO2 but for good results the temperature should not exceed 2 degrees C.  相似文献   

18.
The dynamic behavior of various types of cytochromes c in the redox reaction with iron hexacyanides was studied using a temperature-jump method in order to elucidate the molecular mechanism of the redox reaction of cytochromes with their oxidoreductants. Transmittance after the temperature jump changed through a single exponential decay for all cytochromes investigated. Under a constant concentration of anion, the redox reaction of various types of cytochrome c with iron hexacyanides was analyzed according to the scheme: (see formula in text) where C(III) and C(II) are ferric and ferrous cytochromes, respectively, Fe(III) and Fe(II) are ferri- and ferrocyanides, respectively, C(III) . Fe(II) is the ferricytochrome-ferrocyanide complex and C(II) . Fe(III) is the ferrocytochrome-ferricyanide complex. When step B is slower than the other two steps A and C, tau-1 can be represented approximately as (see formula in text) where the bar over the variables denotes the equilibrium value. In a large excess of ferrocyanide against cytochrome, we can estimate kappa 2, kappa-2, K1 and K3 independently. In the case of horse cytochrome c at 18 degrees C in 0.1 M phosphate buffer at pH 7 with 0.3 M KNO3, the estimated parameters are kappa 2 = 100 +/- 50 S-1, kappa-2 = (3.5 +/- 1.0) . 10(3) S-1, K1 = 15 +/- 7 M-1 and K3 = (8.5 +/- 1.5). 10(-4) M. From the same experiments for seven cytochromes (cytochrome c from horse, tuna, Candida krusei, Saccharomyces oviformis, Rhodospirillum rubrum cytochrome c2, Spirulina platensis cytochrome c-554 and Thermus thermophilus cytochrome c-552), the following results can be deduced. (1) Each parameter defined in the scheme above (kappa 2, kappa-2, K1, K3) diverged beyond the error range. Above all, kappa 2 values of cytochromes c-554 and c-552 are as large as 1 . 10(4) S-1 and much larger than those for the other cytochromes (to 50 approx. 700 S-1). (2) The variance of kappa 2K1 and kappa-2/K3 are relatively less than the variances of individual parameters (kappa 2, kappa-2, K1 and K3), which suggests that the values of kappa 2K1 and kappa-2/K3 have been conserved during the course of evolution.  相似文献   

19.
Flash photolysis of the membrane-bound cytochrome oxidase/carbon monoxide compound in the presence of oxygen at low temperatures and in the frozen state leads to the formation of three types of intermediates functional in electron transfer in cytochrome oxidase and reduction of oxygen by cytochrome oxidase. The first category (A) does not involve electron transfer to oxygen between -125 degrees and -105 degrees, and includes oxy compounds which are spectroscopically similar for the completely reduced oxidase (Cu1+alpha3(2+)-O2) or for the ferricyanide-pretreated oxidase (Cu2+alpha3(3+)-O2). Oxygen is readily dissociated from compounds of type A. The second category (B) involves oxidation of the heme and the copper moiety of the reduced oxidase to form a peroxy compound (Cu2+alpha 3(3+)-O2=or Cu2+alpha3(2+)-O2H2) in the temperature range from -105 degrees to -60 degrees. Above -60 degrees, compounds of type B serve as effective electron acceptors from cytochromes a, c, and c1. The third category (C) is formed above -100 degrees from mixed valency states of the oxidase obtained by ferricyanide pretreatment, and may involve higher valency states of the heme iron (Cu2+alpha3(4+)-O2=). These compounds act as electron acceptors for the respiratory chain and as functional intermediates in oxygen reduction. The remarkable features of cytochrome oxidase are its highly dissociable "oxy" compound and its extremely effective electron donor reaction which converts this rapidly to tightly bound reduced oxygen and oxidized oxidase.  相似文献   

20.
Lung carbonic anhydrase (CA) participates directly in plasma CO2-HCO3(-)-H+ reactions. To characterize pulmonary CA activity in situ, CO2 excretion and capillary pH equilibration were examined in isolated saline-perfused rat lungs. Isolated lungs were perfused at 25, 30, and 37 degrees C with solutions containing various concentrations of HCO3- and a CA inhibitor, acetazolamide (ACTZ). Total CO2 excretion was partitioned into those fractions attributable to dissolved CO2, uncatalyzed HCO3- dehydration, and catalyzed HCO3- dehydration. Approximately 60% of the total CO2 excretion at each temperature was attributable to CA-catalyzed HCO3- dehydration. Inhibition of pulmonary CA diminished CO2 excretion and produced significant postcapillary perfusate pH disequilibria, the magnitude and time course of which were dependent on temperature and the extent of CA inhibition. The half time for pH equilibration increased from approximately 5 s at 37 degrees C to 14 s at 25 degrees C. For the HCO3- dehydration reaction, pulmonary CA in situ displayed an apparent inhibition constant for ACTZ of 0.9-2.2 microM, a Michaelis-Menten constant of 90 mM, a maximal reaction velocity of 9 mM/s, and an apparent activation energy of 3.0 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号