首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new double-headed protease inhibitors from black-eyed peas have amino acid compositions typical of the low molecular weight protease inhibitors from legume seeds. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 83 amino acid residues per monomer. Black-eyed pea trypsin inhibitor (BEPTI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 75 residues per monomer. The molar extinctions at 280 nm are 2770 for BEPCI and 3440 for BEPTI. The single tyrosyl residue is very inaccessible to solvent in native BEPCI and BEPTI at neutral pH and titrates anomalously with an apparent pK = 12. Ionization of tyrosine is complete in 13 hours above pH 12. No heterogeneity of the local environment of the tyrosyl residues in different subunits can be detected spectrophotometrically. The large number of cystine residues leads to an intense and complex near-ultraviolet CD spectrum with cystine contributions in the regions of 248 and 280 nm and tyrosine contributions at 233 and 280 nm. An intact disulfide structure is required for appearance of the tyrosyl CD bands. The inhibitors are unusually resistant to denaturation when compared with similar low molecular weight proteins of high disulfide content. All observations are consistent with a far more rigid structure for BEPCI and BEPTI than for a typical protein.  相似文献   

2.
T R Leary  D T Grahn  H Neurath  G M Hass 《Biochemistry》1979,18(11):2252-2256
The determination of the covalent structure of a carboxypeptidase inhibitor from potatoes containing 39 amino acid residues has been completed by analysis of the pairing of the six half-cystine residues. Since the native inhibitor is resistant to fragmentation by proteases, the protein was first subjected to cleavage at aspartic acid residues by exposure to 0.03 N HCl at 110 degrees C for 10h to yield a fragment containing two chains (residues 6-15 and residues 18-39)held together by three disulfide bonds. Digestion with subtilisin and Pronase, respectively, yielded sets of peptides from which, by diagonal electrophoresis and amino acid analysis, the paired cystinyl residues were identified as Cys-8 to Cys-24, Cys-12 to Cys-27, and Cys-18 to Cys-34. Charge-transfer titration of the native inhibitor with N-methylnicotinamide chloride suggests that one of the two tryptophan residues and the single tyrosine residue are exposed to the solvent.  相似文献   

3.
Fetuins are among the major plasma proteins, yet their biological role has remained elusive. Here we report the molecular cloning of rat fetuin and the sequence analysis of a full-length clone, RF619 of 1456 bp with an open reading frame of 1056 bp encoding 352 amino acid residues. The coding part of RF619 was identical with the cDNA sequence of the natural inhibitor of the insulin receptor tyrosine kinase from rat (pp63) except for four substitutions and a single base insertion causing divergence of the predicted protein sequences. Partial amino acid sequences of rat plasma fetuin were in agreement with the predictions based on the RF619 cDNA. Purified rat fetuin inhibited the insulin receptor tyrosine kinase in vitro. Therefore, we conclude that RF619 and pp63 cDNA encode the same protein, i.e. authentic rat fetuin which is a functional tyrosine kinase inhibitor.  相似文献   

4.
The trypsin inhibitors in buckwheat seeds were isolated by affinity chromatography on trypsin-Sepharose 4B, and the components were fractionated by chromatography on DEAE-Sepharose CL-6B. The major components, inhibitors I, II and III, were found to be homogeneous proteins with molecular weight of about 8,000. Trypsin inhibitory activity was more pronounced than the chymotrypsin inhibitory activity in all the inhibitor preparation obtained. The three major inhibitors had similar amino acid compositions and had no detectable amounts of tryptophan and carbohydrate. A high level of acidic and basic amino acid residues and a low level of methionine, tyrosine and phenylalanine residues characterized the inhibitors. Although the inhibitors I and II were particularly thermostable, inhibitor III, the most abundant component, was shown to be relatively heat-labile.  相似文献   

5.
We are presenting the first primary structure of a snake venom inhibitor. It was isolated from the neurotoxin vipoxin of the Bulgarian Viper (Vipera ammodytes ammodytes, Serpentes) which represents a complex of a strong toxic basic protein with phospholipase A2 activity (2 isoenzymes) and the nontoxic acidic component functioning as its inhibitor. The sequence was established by automatic degradation in a liquid phase sequenator on the S-carboxymethylated chain and on the peptides obtained by tryptic hydrolysis of the oxidized chain. A limited tryptic digestion of the oxidized chain provided the necessary overlapping peptides. The inhibitor consists of 122 amino-acid residues including 14 cysteine and 10 tyrosine residues and is thus similar to the phospholipases from snake venoms. A comparison of the inhibitor sequence with the primary structure of the phospholipase A2 (CM-II) from the Horned Adder (Bitis nasicornis) venom shows a surprising homology of 52%. The identical amino acids include the cysteine and tyrosine residues and are generally accumulated in the surroundings of cysteine residues. The histidine (pos. 47) in the active center of the phospholipase A2 is substituted by glutamine in the inhibitor, but the tryptophan (pos. 30) which is essential for the enzymatic activity is present. The significant homology between enzyme and inhibitor in the vipoxin complex is believed to originate from a gene duplication. The relatively late development of the reptiles and the snake venom complex explains the highly preserved structure compared to other enzyme-inhibitor systems.  相似文献   

6.
Kidney bean (Phaseolus vulgaris) alpha-amylase inhibitors, which are bivalent inhibitors with the subunit stoichiometry of (alphabeta)(2) complex, have been inferred to contain unique arginine, tryptophan, and tyrosine residues essential for the inhibitory activity. To test the validity of this inference, an attempt was made to identify the essential amino acid residues of a white kidney bean (P. vulgaris) alpha-amylase inhibitor (PHA-I) by using the chemical modification technique combined with amino acid sequencing and mass spectrometry. Exhaustive modification of the arginine residues by phenylglyoxal did not lead to a marked loss of activity, suggesting that no arginine residue is directly associated with the inhibitory activity. N-Bromosuccinimide treatment of PHA-I in the presence or absence of a substrate alpha-amylase revealed the involvement of two tryptophan residues in alpha-amylase inhibition, and they were identified as Trp188 of the beta-subunit by amino acid sequencing and mass spectrometry of lysylendopeptidase peptides. Further, two tyrosine residues were preferentially modified either by N-acetylimidazole or by tetranitromethane, resulting in a concomitant loss of most of the PHA-I activity. Amino acid sequencing of the lysylendopeptidase peptides from a tetranitromethane-modified PHA-I identified Tyr186 of the beta-subunit as an essential residue.  相似文献   

7.
Protein kinase CK2 exhibits oncogenic activity in mice and is over-expressed in a number of tumors or leukemic cells. On the basis of its amino acid sequence and a wealth of experimental information, CK2 has traditionally been classified as a protein serine/threonine kinase. In contrast to this traditional view of CK2, recent evidence has shown that CK2 can also phosphorylate tyrosine residues under some circumstances in vitro and in yeast. In this study, we provide definitive evidence demonstrating that CK2 also exhibits tyrosine kinase activity in mammalian cells. Tyrosine phosphorylation of CK2 in cells and in CK2 immunoprecipitates is dependent on CK2 activity and is inhibited by the CK2 selective inhibitor 4,5,6,7-tetrabromobenzotriazole. Examination of phosphotyrosine profiles in cells reveals a number of proteins, including CK2 itself, which exhibit increased tyrosine phosphorylation when CK2 levels are increased. Peptide arrays to evaluate the specificity determinants for tyrosine phosphorylation by CK2 reveal that its specificity for tyrosine phosphorylation is distinct from its specificity for serine/threonine phosphorylation. Of particular note is the requirement for an aspartic acid immediately C-terminal to the phosphorylatable tyrosine residue. Collectively, these data provide conclusive evidence that CK2 catalyzes the phosphorylation of tyrosine residues in mammalian cells, a finding that adds a new level of complexity to the challenge of elucidating its cellular functions. Furthermore, these results raise the possibility that increased CK2 levels that frequently accompany transformation may contribute to the increased tyrosine phosphorylation that occurs in transformed cells.  相似文献   

8.
The effects of neighboring residues and formulation variables on tyrosine oxidation were investigated in model dipeptides (glysyl tyrosine, N-acetyl tyrosine, glutamyl tyrosine, and tyrosyl arginine) and tripeptide (lysyl tyrosyl lysine). The tyrosyl peptides were oxidized by light under alkaline conditions by a zero-order reaction. The rate of the photoreaction was dependent on tyrosyl pK(a), which was perturbed by the presence of neighboring charged amino acid residues. The strength of light exposure, oxygen headspace, and the presence of cationic surfactant, cetyltrimethylammonia chloride had a significant effect on the kinetics of tyrosyl photo-oxidation. Tyrosine and model tyrosyl peptides were also oxidized by hydrogen peroxide/metal ions at neutral pH. Metal-catalyzed oxidation followed first-order kinetics. Adjacent negatively charged amino acids accelerated tyrosine oxidation owing to affinity of the negative charges to metal-ions, whereas positively charged amino acid residues disfavored the reaction. The oxidation of tyrosine in peptides was greatly affected by the presence of adjacent charged residues, and the extent of the effect depended on the solution environment.  相似文献   

9.
The structure of the type II DHQase from Streptomyces coelicolor has been solved and refined to high resolution in complexes with a number of ligands, including dehydroshikimate and a rationally designed transition state analogue, 2,3-anhydro-quinic acid. These structures define the active site of the enzyme and the role of key amino acid residues and provide snap shots of the catalytic cycle. The resolution of the flexible lid domain (residues 21-31) shows that the invariant residues Arg23 and Tyr28 close over the active site cleft. The tyrosine acts as the base in the initial proton abstraction, and evidence is provided that the reaction proceeds via an enol intermediate. The active site of the structure of DHQase in complex with the transition state analog also includes molecules of tartrate and glycerol, which provide a basis for further inhibitor design.  相似文献   

10.
Liquefying alpha-amylase from Bacillus amyloliquefaciens was inactivated by treatment with tetranitromethane and N-acetylimidazole. The loss of activity occurred with modification of five tyrosine residues. Preincubation of the enzyme with either the substrate or the competitive inhibitor at saturating levels provided complete protection against inactivation. However, the presence of substrate/inhibitor in the reaction mixture protected only two of the five modifiable tyrosine residues, suggesting the involvement of only two tyrosine residues at the active center. This was confirmed when hydroxylamine treatment of the acetylated enzyme fully restored the enzymatic activity. Both nitration and acetylation increased the apparent Km of the enzyme for soluble starch, which indicated that the tyrosine residues are involved in substrate binding. Reduction of nitrotyrosine residues to aminotyrosine residues failed to restore the enzymatic activity. So, the loss of activity on modification of tyrosine residues was ascribed to conformational perturbances and not simply to the changes in the ionic character of tyrosine residues.  相似文献   

11.
Analysis of sequence requirements for protein tyrosine sulfation.   总被引:5,自引:0,他引:5       下载免费PDF全文
We analyzed sequences surrounding known tyrosine sulfation sites to determine the characteristics that distinguish these sites from those that do not undergo sulfation. Tests evaluated the number and position of acidic, basic, hydrophobic, and small amino acids, as well as disulfide and N-glycosylation (sugar) sites. We determined that composition-based tests that select close to 100% of known tyrosine sulfation sites reject 97% of the non-sulfated tyrosines. The acidic test, by far the most selective, eliminated 95% of the non-sulfated tyrosine residues and none of the sulfated tyrosines. Including the basic, hydrophobic, and disulfide tests increased the elimination rate to 97%. Whereas no position flanking the tyrosine residues had the same amino acid always present, imperfectly conserved amino acids found in some positions will improve the specificity of the tests.  相似文献   

12.
Using the technique of site-directed mutagenesis, point mutants of human PDE4A have been developed in order to identify amino acids involved in inhibitor binding. Relevant amino acids were selected according to a peptidic binding site model for PDE4 inhibitors, which suggests interaction with two tryptophan residues, one histidine and one tyrosine residue, as well as one Zn(2+) ion. Mutations were directed at those tryptophan, histidine, and tyrosine residues, which are conserved among the PDE4 subtypes (PDE4A-D) and lie within the high-affinity 4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidone (rolipram) binding domain of human PDE4A (amino acids 276-681 according to the PDE4A sequence L20965). Truncations to this region do not alter enzyme activity or inhibitor sensitivity. The mutants were expressed in COS1 cells, and the recombinant cyclic nucleotide phosphodiesterase (PDE) forms have been characterized in terms of their catalytic activity and inhibitor sensitivities. Tyrosine residues 432 and 602, as well as histidine 588, were found to be involved in inhibitor binding, but no interaction was detected between tryptophan and PDE inhibitors tested. To test the possibility that other amino acids are of importance for hydrophobic interactions, selected phenylalanine residues were also mutated. We found phenylalanine 613 and 645 to influence inhibitor binding to PDE4. The significant differences in the inhibitor sensitivities of the mutants show that the various inhibitors have different enzyme binding sites. Based on the assumption that the known side effects of PDE4 inhibitors (like emesis and nausea) are caused directly by selective inhibition of different conformation states of PDE4, our results may be a hint to differ between PDE4 inhibitors, which have emetic side effects (like rolipram), and those that do not have side effects (like N-(3,5-dichlorpyrid-4-yl)-[1-(4-fluorbenzyl)-5-hydroxy-indol-3-yl]-glyoxylateamide [AWD12-281]) by the differences of their binding sites and in that context contribute to the development of novel drugs. Furthermore, the identification of amino acid interactions proposed by the peptidic binding site model, which was used for the mutant selection, verifies the PrGen modeling as a useful method for the prediction of inhibitor binding sites in cases where detailed knowledge of the protein structure is not available.  相似文献   

13.
A model is proposed for lac repressor-lac operator binding which accounts for the tetrameric subunit structure of the lac repressor and for factors involved in the strength, specificity and regulation of repressor-operator interaction. The model employs a π-helix in the amino terminal 25 residues of the lac repressor whereby three tyrosine residues of each subunit intercalate between base pairs of the lac operator. For the outer palindromic sequences of the operator, base specificity is provided by amino acids adjacent to the carboxyl sides of the tyrosine residues of two of the subunits. The inner palindromic sequences which bind the other two subunits form stems of hairpin loops in the operator. Base specificity for these two subunits is provided by amino acids adjacent to the amino sides of the tyrosine residues. In addition to 12 intercalated tyrosine residues, the model provides for a total of at least eight electrostatic interactions and ten sequence-specific hydrogen bonds.  相似文献   

14.
Tyrosine sulfate was identified as a constituent of human heparin cofactor II by analysis of sulfate-labeled protein secreted by a human hepatoma-derived cell line and of purified protein from human plasma. Alkaline hydrolysis of heparin cofactor II released tyrosine sulfate as demonstrated by anion-exchange high performance liquid chromatography of hydrolysates. Two sites of sulfation were identified, and the amino acid sequences of the sites were established by sequential Edman degradation of sulfate-containing tryptic peptides that were isolated by reverse-phase high performance liquid chromatography. Each peptide contains only a single tyrosine residue so that the sites of sulfation can be assigned unambiguously. The two sites of sulfation are separated by 13 residues and represent an internal sequence repeat in the heparin cofactor II molecule. The two sites have the following sequences. Glu56-Asp-Asp-Asp-Tyr(SO4)-Leu-Asp62 Glu69-Asp-Asp-Asp-Tyr(SO4)-Ile-Asp75 Sulfate-labeled heparin cofactor II formed a covalent complex with thrombin in a heparin-dependent manner. Thus, the sulfate-containing form of the protein was shown to be biologically active. The characteristic sulfate-containing segment of heparin cofactor II, which contains 17 acidic amino acid residues over a span of 30 residues, may contribute to the unique properties of this thrombin inhibitor.  相似文献   

15.
A method of isolating preparations of pancreatic inhibitor of trypsin, bound with soluble polysaccharide carriers, is worked out. It is demonstrated that the reaction of a pancreatic inhibitor and cyanuric chloride-activated dextran proceeds for OH groups of tyrosine residues and for-epsilon-NH2 groups of lysine residues. A method is offered of the protection of amino groups with citraconic anhydride for the complete retaining of the inhibitory activity during attachment to dextran. Thermic denaturation of pancreatic inhibitor preparations at pH 4.7 and 97 degrees C is studied. It is found that the modification by 2-amino-4.6-dichloro-s-triazine stabilizes the protein molecule, while the interaction with the matrix of soluble dextran does not carry any contribution to thermostability of the pancreatic inhibitor.  相似文献   

16.
The inhibition of purified bovine adrenal tyrosine hydroxylase by several product and substrate analogues has been studied to probe the kinetic mechanism. Norepinephrine, dopamine, and methylcatechol are competitive inhibitors versus tetrahydropterins and noncompetitive inhibitors versus tyrosine. 3-Iodotyrosine is an uncompetitive inhibitor versus tetrahydropterins and a competitive inhibitor versus tyrosine. The Ki value for 3-iodotyrosine depends on the tetrahydropterin used. These results are consistent with tetrahydropterin binding first to the free enzyme followed by binding of tyrosine. 5-Deaza-6-methyltetrahydropterin is a noncompetitive inhibitor versus tetrahydropterins and tyrosine. The effect of varying the concentration of tyrosine on the Ki value for 5-deaza-6-methyltetrahydropterin is consistent with the binding of this inhibitor to both the free enzyme and to an enzyme-dihydroxyphenylalanine complex. Dihydroxyphenylalanine also is a noncompetitive inhibitor versus tetrahydropterins and tyrosine; the effect of changing the fixed substrate is consistent with the binding of this inhibitor to both the free enzyme and to the enzyme-tetrahydropterin complex. The effect of pH on the Ki values was determined in order to measure the pKa values of amino acid residues involved in substrate binding. Tight binding of catechols requires that a group with a pKa value of 7.6 be deprotonated. Binding of 3-iodotyrosine involves two groups with pKa values of 7.5 and about 5.5, one of which must be protonated for binding. Binding of 5-deaza-6-methyltetrahydropterin requires that a group on the free enzyme with a pKa value of 6.1 be protonated. The Ki value for dihydroxyphenylalanine is relatively insensitive to pH, but the inhibition pattern changes from noncompetitive to competitive above pH 7.5, consistent with the measured pKa values for binding to the free enzyme and to the enzyme-tetrahydropterin complex.  相似文献   

17.
Recent efforts have yielded a number of short peptide sequences with useful binding, sensing, and cellular uptake properties. In order to attach these sequences to tyrosine residues on intact proteins, a three-component Mannich-type strategy is reported. Two solid phase synthetic routes were developed to access peptides up to 20 residues in length with anilines at either the N- or C-termini. In the presence of 20 mM formaldehyde, these functional groups were coupled to tyrosine residues on proteins under mild reaction conditions. The identities of the resulting bioconjugates were confirmed using mass spectrometry and immunoblot analysis. Screening experiments have demonstrated that the method is compatible with substrates containing all of the amino acids, including lysine and cysteine residues. Importantly, tyrosine residues on proteins exhibit much faster reaction rates, allowing short peptides containing this residue to be coupled without cross reactions.  相似文献   

18.
The proteinase inhibitor WSCI, active in inhibiting bacterial subtilisin and a number of animal chymotrypsins, was purified from endosperm of exaploid wheat (Triticum aestivum, c.v. San Pastore) by ion exchange chromatography and its complete amino acid sequence was established by automated Edman degradation. WSCI consists of a single polypeptide chain of 72 amino acid residues, has a molecular mass of 8126.3 Da and a pl of 5.8. The inhibition constants (Ki) for Bacillus licheniformis subtilisin and bovine pancreatic alpha-chymotrypsin are 3.92 x 10(-9) M and 7.24 x 10(-9) M, respectively. The inhibitor contains one methionine and of tryptophan residue and has a high content of essential amino acids (41 over a total of 72 residues), but no cysteines. The primary structure of WSCI shows high similarity with barley subtilisin-chymotrypsin isoinhibitors of the Cl-2 type and with maize subtilisinchymotrypsin inhibitor MPI. Significant degrees of similarity were also found between sequences of WSCI and of other members of the potato inhibitor I family of the serine proteinase inhibitors. The wheat inhibitor WSCI has a single reactive site (the peptide bond between methionyl-48 and glutamyl-49 residues) as identified by affinity chromatography and sequence analysis.  相似文献   

19.
Characterization of lamprey fibrinopeptides   总被引:9,自引:1,他引:8       下载免费PDF全文
1. Lamprey fibrinopeptide B is a relatively large peptide made up of about 40 amino acid residues. The peptide is highly electronegative, containing a large number of aspartic acid residues and a tyrosine O-sulphate residue. 2. The amino acid sequence of the first 18 residues from the N-terminal end of fibrinopeptide B has been established. The C-terminal ends with the sequence Val-Arg. Fibrino-peptide B is released by both lamprey and bovine thrombins. 3. Lamprey fibrino-peptide A is a short peptide containing only eight residues. The proposed amino acid sequence is: Asp-Asp-Ser-Ile/Leu-Asp-Ser-Leu/Ile-ArgThis peptide is released by lamprey thrombin but not by bovine thrombin.  相似文献   

20.
1. Modification of potato (Solanum tuberosum) lectin with acetic anhydride blocked 5.1 amino and 2.7 tyrosyl groups per molecule of lectin and decreased the haemagglutinating activity of the lectin. De-O-acetylation regenerated 2.0 of the tyrosyl groups and resulted in a recovery of activity. 2. Modification with citraconic anhydride or cyclohexane-1,2-dione did not greatly affect activity, although modification of amino and arginyl groups could be demonstrated. 3. Treatment with tetranitromethane nitrated 3.7 tyrosine residues per molecule of lectin with concomitant loss of activity. The presence of 0.1m-NN′N″-triacetylchitotriose (a potent inhibitor of the lectin) in the reaction medium protected all the tyrosyl residues from nitration and the lectin was fully active. 4. Modification of tryptophyl groups with 2-hydroxy-5-nitrobenzyl bromide and 2,3-dioxoindoline-5-sulphonic acid modified 0.9 and 2.6 residues per molecule of lectin respectively with a loss of activity in each case. Reaction of potato lectin with 2,3-dioxoindoline-5-sulphonic acid in the presence of inhibitor protected 2.4 residues of tryptophan from the reagent. Loss of haemagglutination activity was prevented under these conditions. 5. Reaction of carboxy groups, activated with carbodi-imide, with α-aminobutyric acid methyl ester led to the incorporation of 5.3 residues of the ester per molecule of lectin. Presence of inhibitor in this case, although protecting activity, did not prevent modification of carboxy groups; in fact an increase in the number of modified residues was seen. This effect could be imitated by performing the reaction in 8m-urea. In both cases the number of carboxy groups modified was close to the total number of free carboxy groups as determined by the method of Hoare & Koshland [(1967) J. Biol. Chem. 242, 2447–2453]. Guanidination of lysine residues after carboxy-group modification gave less homoarginine than did the unmodified lectin under the same conditions, suggesting the formation of intramolecular cross-links during carbodi-imide activation. 6. It is suggested from the results presented that amino, arginyl, methionyl, histidyl and carboxyl groups are not involved in the activity of the lectin and that tyrosyl and tryptophyl groups are very closely involved. These findings are similar to those reported for other proteins that bind N-acetylglucosamine oligomers and also fit the general trend in other lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号