首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

4.
Brain astrocytes play a pivotal role in the brain response to inflammation. They express IL-1 receptors including the type I IL-1 receptor (IL-1RI) that transduces IL-1 signals in cooperation with the IL-1 receptor accessory protein (IL-1RAcP) and the type II IL-1 receptor (IL-1RII) that functions as a decoy receptor. As glucocorticoid receptors are expressed on astrocytes, we hypothesized that glucocorticoids regulate IL-1 receptors expression. IL-1beta-activated mouse primary astrocytes were treated with 10(-6) M dexamethasone, and IL-1 receptors were studied at the mRNA and protein levels. Using RT-PCR, IL-1RI and IL-1RII but not IL-1RAcP mRNAs were found to be up-regulated by dexamethasone in a time-dependent manner. Dexamethasone (Dex), but not progesterone, had no effect on IL-1RI but strongly increased IL-1RII mRNA expression. Binding studies revealed an increase in the number of IL-1RII binding sites under the effect of Dex, but no change in affinity. These findings support the concept that glucocorticoids have important regulatory effect on the response of astrocytes to IL-1.  相似文献   

5.
In previous studies, the induction of Ia antigens on murine peritoneal exudate macrophages by recombinant IFN-gamma (rIFN-gamma) and the antagonism of rIFN-gamma-induced Ia expression by the inhibitors IFN-alpha/beta and glucocorticoids have been examined. In this report, these findings have been extended to an analysis of total or cytoplasmic mRNA from macrophage cultures treated with rIFN-gamma in the absence or presence of these two inhibitors. Recombinant IFN-gamma induced a 5.7- to 6.5-fold increase in steady-state levels of Ia (A alpha-specific) mRNA. Coordinate increases in steady-state mRNA for A beta, and E alpha were observed in response to rIFN-gamma. Maximum induction occurred 24 hr post-treatment and required the continued presence of rIFN-gamma. Induction of A alpha-specific mRNA was sensitive to the protein synthesis inhibitor cycloheximide. Simultaneous treatment of macrophage cultures with rIFN-gamma and IFN-alpha/beta or the glucocorticoid dexamethasone (DEX) resulted in a significant decrease in steady-state, A alpha-specific mRNA levels compared with treatment with rIFN-gamma alone. This analysis suggests that both the induction of Ia expression by rIFN-gamma, and the antagonism of rIFN-gamma-induced Ia gene expression by IFN-alpha/beta and DEX, are regulated by cognate changes in Ia mRNA.  相似文献   

6.
7.
8.
The glucocorticoid receptor is present in cytosol prepared from cell extracts of nonhormone-treated cells as a large nonactivated (i.e. non-DNA binding) 9 S heteromeric complex which contains the Mr approximately 90,000 heat shock protein, hsp90. hsp90 is expressed under physiological conditions in mammalian cells and is also present in reticulocyte lysate, as assessed by Western immunoblotting using specific anti-hsp90 antibodies. We have translated glucocorticoid receptor mRNA in reticulocyte lysates. The receptor synthesized under cell-free conditions also interacts with hsp90 both in the presence and absence of ligand, as determined by sucrose gradient centrifugation. The in vitro synthesized glucocorticoid receptor does not bind to DNA-cellulose but can be converted to a DNA binding form following labeling with dexamethasone and heat treatment. Thus, the glucocorticoid receptor is synthesized in a nonactivated form under cell-free conditions. These data indicate that the 9 S glucocorticoid receptor complex found in cytosol does not represent an artifact due to cell homogenization and supports the existence in vivo of the glucocorticoid receptor-hsp90 complex.  相似文献   

9.
Glucocorticoids are the main product of the adrenal cortex and participate in multiple cell functions as immunosupressors and modulators of neural function. Within the brain, glucocorticoid activity is mediated by high-affinity mineralocorticoid and low-affinity glucocorticoid receptors. Among brain cells, hippocampal cells are rich in glucocorticoid receptors where they regulate excitability and morphology. Also, elevated glucocorticoid levels suppress hippocampal neurogenesis in adults. The pineal neuroindole, melatonin, reduces the affinity of glucocorticoid receptors in rat brain and prevents glucocorticoid-induced apoptosis. Here, the ability of melatonin to prevent glucocorticoid-induced cell death in hippocampal HT22 cells was investigated in the presence of neurotoxins. Results showed that glucocorticoids reduce cellular growth and also enhance sensitivity to neurotoxins. We found a G(1) cell cycle arrest mediated by an increase of cyclin/cyclin-dependent kinase inhibitor p21(WAF1/CIP1) protein after dexamethasone treatment and incremental change in amyloid beta protein and glutamate toxicity. Melatonin prevents glucocorticoids inhibition of cell proliferation and reduces the toxicity caused by glucocorticoids when cells were treated with dexamethasone in combination with neurotoxins. Although, melatonin does not reduce glucocorticoid receptor mRNA or protein levels, it decreases receptor translocation to nuclei in these cells.  相似文献   

10.
We have isolated a full length cDNA that encodes a heat shock protein, hsp90, from a rat brain library and present the nucleotide sequence and deduced amino acid sequence. Comparison of the entire nucleotide sequence with mouse hsp84 and human hsp90β cDNAs reveal sequence similarities of 92 and 87%, respectively. The coding region of 2172 nucleotides corresponds to a polypeptide chain of 724 amino acids. Comparison with mouse hsp84 and human hsp90β amino acid sequences indicates a similarity of 97%, respectively. Characterization of the constitutive expression of this cDNA both by RNA blot hybridization and immunoblotting, reveals that it is expressed in all rat tissues examined. Hsp90 has been shown to form a transient complex with steroid hormone receptors. In order to further elucidate the role of hsp90 in the endocrine response of cells, we have examined the effects of dexamethasone and RU38486 on the level of hsp90 mRNA in a system in which glucocorticoids down-regulate glucocorticoid receptor mRNA levels. In this system, a subtle but reproducible approx. 2-fold decrease in hsp90 mRNA levels is observed after 48 h treatment with dexamethasone.  相似文献   

11.
12.
13.
A pulse-chase labeling technique was used to determine the properties of glucocorticoid receptors occupied by the antiglucocorticoid hormone RU486 in S49.1 mouse lymphoma cells. Cells were pulse-labeled with [35S]methionine and then at the beginning of the chase, either no hormone (control), dexamethasone, or RU486 was added to cells. At 4 h into the chase, cytosol was prepared and receptors were immunoadsorbed to protein A-Sepharose using the BuGR2 antireceptor antibody. Immunoadsorbed proteins were resolved by gel electrophoresis and analyzed by autoradiography. The 90 kDa heat shock protein (hsp90) coimmunoadsorbed with receptors from control cells when protein A-Sepharose pellets were washed with 250 mM NaCl but not when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that hsp90-receptor complexes are disrupted by a high concentration of salt in the absence of molybdate. hsp90 coimmunoadsorbed with receptors from RU486-treated cells even when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that RU486 stabilizes the association of hsp90 with the glucocorticoid receptor. In contrast, hsp90 did not coimmunoadsorb with receptors from dexamethasone-treated cells, consistent with earlier evidence that hsp90 dissociates from the receptor when the receptor binds glucocorticoid hormone. Dexamethasone induced a rapid quantum decrease in the amount of normal receptor recovered from cytosol but did not induce a decrease in the amount of nuclear transfer deficient receptor recovered from cytosol, consistent with tight nuclear binding of normal receptors occupied by dexamethasone. In contrast, RU486 did not induce a quantum decrease in the recovery of normal receptors from cytosol, indicating that receptors occupied by RU486 are not tightly bound in the nuclear fraction. We conclude that the antiglucocorticoid hormone RU486, in contrast to the glucocorticoid hormone dexamethasone, stabilizes the association between the glucocorticoid receptor and hsp90. The decreased affinity of receptors occupied by RU486 for the nuclear fraction may be due to their association with hsp90 and may account for the failure of RU486 to exert agonist activity.  相似文献   

14.
15.
The third component of C, C3, is the key opsonin of the C cascade and is produced locally within the lung by pulmonary epithelial cells, macrophages, and fibroblasts. Because glucocorticoids regulate the maturation and expression of several physiologically important genes in pulmonary epithelial cells, we examined the effects of glucocorticoids on C3 mRNA expression and C3 synthesis by the human pulmonary epithelial cell line, A549. Treatment with dexamethasone enhanced C3 production in a time- and dose-dependent fashion such that concentrations of dexamethasone greater than or equal to 0.001 microM significantly increased C3 production on day 3 of culture. Natural glucocorticoids, corticosterone, cortisol, and 11-deoxycortisol also increased C3 concentrations in A549 supernatants. Both cycloheximide and the glucocorticoid receptor antagonist, RU486, individually inhibited the effect of dexamethasone on C3 production. Northern analysis demonstrated that the steady state 5.2-kb C3 message increased in A549 cells within 10 h of treatment with dexamethasone. RU486 inhibited the effect of dexamethasone on C3 mRNA expression. The integrity of the C3 thiolester bond, as measured by [3H]iodoacetic acid titration and hemolytic assay, was not disrupted by dexamethasone. We conclude that glucocorticoids such as dexamethasone enhance the expression of C3 mRNA and increase the production of functionally active C3 by A549 cells by a mechanism that is mediated by the intracellular glucocorticoid receptor.  相似文献   

16.
Messenger RNAs coding for glucocorticoid (GR) and mineralocorticoid (MR) receptor proteins were localized to discrete subfields of the hippocampal formation by in situ hybridization histochemistry, using cRNA probes of approximately equivalent specific activity. Both GR and MR mRNAs were present in all subfields examined; GR mRNA was of greatest abundance in CA1, while MR mRNA was most densely labeled in CA3. In all subfields examined, MR mRNA was considerably more abundant than GR mRNA. Removal of circulating glucocorticoids by adrenalectomy precipitated an up-regulation of GR mRNA in subfields CA1-2 and the dentate gyrus, which was reversed by dexamethasone replacement. High doses of dexamethasone significantly down-regulated GR mRNA in CA3. In contrast, adrenalectomy produced significant up-regulation of MR mRNA only in subfield CA1-2. The data indicate that steroid receptor mRNAs are differentially distributed in hippocampus, and that sensitivity to steroids occurs within defined structural domains of the hippocampal formation.  相似文献   

17.
18.
Steroid hormones have been shown to modulate a number of physiological processes in addition to their potent antiinflammatory effects. Endothelin (ET) is a newly discovered vasoconstrictor that is synthesized and released by endothelial cells and acts on adjacent vascular smooth muscle cells by interacting with specific cell surface receptors. Proinflammatory agents such as thrombin and transforming growth factor beta have been shown to up-regulate ET gene expression in vascular endothelial cells. We wondered whether the anti-inflammatory steroids might have any regulatory effect on the ET receptors present in the vascular smooth muscle cells. Rat vascular smooth muscle cells (A-10 cell line, ATCC.CRL 1476) were used as a model system to study the effects of glucocorticoids on ET receptor expression and function. These cells display high density and high affinity ET receptors that belong to the ETA subtype. Pretreatment of these cells with dexamethasone reduced the number of ET receptors by 50-60% without changing the affinity. Of the steroids tested, dexamethasone was most effective followed by prednisolone and hydrocortisone. Aldosterone, a mineralocorticoid, was 5000-fold less potent than dexamethasone. This effect of dexamethasone was dependent on the time of pretreatment and concentration of the steroid used. This down-regulation of ET receptors was also accompanied by an attenuated response to ET-1 in dexamethasone-pretreated cells. The inhibitory effect of dexamethasone was selective for ET receptors because the vasopressin-mediated response was unaffected. In addition, dexamethasone pretreatment of these cells resulted in 50-60% reduction in the steady-state level of ETA receptor mRNA as revealed by Northern analysis. These results suggest that glucocorticoid pretreatment of smooth muscle cells resulted in the down-regulation of the ETA receptor at the mRNA level.  相似文献   

19.
The glucocorticoid receptor is present in the cytosol of cell extracts as a large nonactivated (i.e. non-DNA-binding) approximately 9 S (Mr 300,000) complex. Experimental evidence indicates that the purified nonactivated glucocorticoid receptor contains a single steroid-binding protein and two approximately 90-kDa nonsteroid-binding subunits identified as heat shock protein (hsp) 90. Translation of the glucocorticoid receptor mRNA in vitro in reticulocyte lysates produces a large nonactivated glucocorticoid receptor complex similar to that found in cytosols. The cell-free synthesized glucocorticoid receptor is able to bind steroid and can be activated further to the DNA-binding form. To test the hypothesis of an active role played by hsp90 in the stabilization of a competent steroid-binding conformation of the glucocorticoid receptor, we have synthesized the receptor in a reticulocyte lysate that has been depleted of hsp90 by immunoadsorption with AC88 anti-hsp90. Although the translation capacity of the reticulocyte system was reduced considerably upon hsp90 removal, the glucocorticoid receptor was synthesized, and a significant number of molecules were found to bind [3H]triamcinolone acetonide. Chromatography on DEAE-cellulose showed that most of the receptor molecules synthesized in hsp90-depleted lysate had lost the capacity to form an oligomeric receptor complex. Addition of purified rat liver hsp90 to the hsp90-depleted lysate before translation did not increase steroid binding nor did it restore formation of the heteromeric receptor complex. Analysis of [35S] methionine-labeled glucocorticoid receptor molecules synthesized in the hsp90-depleted lysate showed the production of polypeptides differing from the expected chromatographic pattern on DEAE-cellulose. Upon addition of purified hsp90 to the hsp90-depleted lysate, before translation, the 35S-labeled synthesized receptor fractionated on DEAE-cellulose as an intermediate peak between activated and nonactivated receptor forms. The data suggest that hsp90 alone may not be sufficient for the formation of the nonactivated steroid receptor complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号