首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific, fluorescent, subependymal perikarya were found in the pars anterior of the paraventricular organ (PVOpa), in the nucleus recessus lateralis (NRL) and in the nucleus recessus posterioris (NRP). No fluorescent perikarya were present in the nucleus lateralis tuberis (NLT). Fluorescent nerve tracts connect the PVOpa and the NRL with the NRP, and interconnect the paired NRP. The nucleus preopticus (NPO) and the NLT receive a large input of aminergic nerve fibers. The monoaminergic nuclei are well vascularized, and their vascular plexes seem to be connected. A capillary plexus is situated dorsal to the NRP and exhibits no contact with the pituitary. It is surrounded by the prominent fluorescent tracts connecting the aminergic nuclei.  相似文献   

2.
Neuropeptide Y (NPY) and orexin are neuropeptides involved in the regulation of feeding in vertebrates. In this study we determined the NPY and orexin mRNA tissue expression and their immunoreactivity distribution in both preoptic area and hypothalamus, regions involved in the regulation of feeding behavior. Both peptides presented a wide expression in all tissues examined. The NPY-immunoreactive (ir) cells were localized in the ventral nucleus posterioris periventricularis (NPPv) and numerous ir-NPY fibers were found in the nucleus lateralis tuberis (NLT), the nucleus recess lateralis (NRL) and the neurohypophysis. Ir-orexin cells were observed in the NPPv, dorsal NLT, ventral NLT, lateral NLT (NLTl) and the lateral NRL. Ir-orexin fibers were widespread distributed along all the hypothalamus, especially in the NLTl. Additionally, we observed the presence of ir-orexin immunostaining in adenohypophyseal cells, especially in somatotroph cells and the presence of a few ir-orexin-A fibers in the neurohypophysis. In conclusion, both peptides have an ubiquitous mRNA tissue expression and are similarly distributed in the hypothalamus and preoptic area of Cichlasoma dimerus. The presence of ir-orexin in adenohypohyseal cells and the presence of ir-orexin and NPY fibers in the neurohypophysis suggest that both peptides may play an important neuroendocrine role in anterior pituitary.  相似文献   

3.
Summary The nucleus praeopticus (NPO) is located on both sides of the preoptic recess and is composed of a pars parvocellularis and a pars magnocellularis. Only in the rainbow trout does the pars magnocellularis consist of separately located medium-sized cells and very large cells. Cytologically, three cell types can be distinguished: 1) unipolar cells ending in the cerebrospinal fluid (CSF), 2) bipolar cells also ending in the CSF and forming an axon, and 3) multipolar cells which generally do not have a direct connection with the ventricle.Axons originate from the cell bodies forming the paired preopticohypophysial tract that runs along the border of the diencephalon and the optic tract. A considerable number of NPO fibers leading to the hypophysis makes close contact with the cell bodies of the pars lateralis of the nucleus lateralis tuberis, indicating a functional relationship. Most NPO fibers terminate in the caudal part of the neurohypophysis, around blood capillaries and at the basal lamina of the pars intermedia. Far fewer fibers appear to terminate near the boundary of the neurohypophysis and the rostral and proximal pars distalis.The nucleus lateralis tuberis (NLT) is located in the caudal hypothalamus, beginning at the rostral end of the horizontal commissure and extending caudally beyond the hypophysial stalk. It consists of the partes rostralis, medialis, lateralis and ventrolateralis. In both species the p. rostralis contains small subependymal neurons and some larger ones. Only in the p. medialis of the Atlantic salmon are large cells present. In both species the most prominent part is the p. lateralis, which consists solely of large cells. Cells situated between the p. medialis and the p. lateralis are grouped in the p. ventrolateralis. It was impossible to trace the axons originating in the NLT, since the cyto- and axoplasm could not be stained specifically.The structure of the NPO and NLT in the two salmonid species is compared with that of other teleosts.  相似文献   

4.
The distribution of monoamine fluorescence was studied in the hypothalamohypophysial region of the lamprey. Groups of intensely fluorescent cells were observed in the lateral walls of the caudal part of the third ventricle. The anterior part of the neurohypophysis which is situated over the pars distalis showed weak fluorescence. The posterior part of the neurohypophysis which is contiguous to the pars intermedia contained highly fluorescent material in its rostral part. The distribution of monoamines in the lamprey neurohypophysis is compared with that in the higher vertebrates and their functional significance is discussed.  相似文献   

5.
Summary Fluorescent histochemistry was carried out on the brain of the teleost Myoxocephalus scorpius to show the distribution of monoaminergic neurones and their projections.Posterior to the obex of the fourth ventricle, at the junction of the spinal chord and medulla, there is an unpaired dorsal nucleus of catecholaminergic cells. A second group of catecholaminergic perikarya are scattered lateral to the vagal and glossopharyngeal motor nuclei. Both groups of aminergic cells contribute to a tract which crosses the fourth ventricle at the obex and runs along the lateral wall of the medulla towards the diencephalon.At the level of the isthmus there is a lateral nucleus composed of large catecholaminergic cells with prominent fluorescent axons and its possible homology with the locus coeruleus is considered. Medially, in the same region a nucleus of serotonergic neurones lies between the paired tracts of the fasciculus longitudinalis medialis.In the diencephalon there are three paraventricular nuclei, the nuclei recessus posterioris and lateralis and the paraventricular organ pars anterior. Ventral to the lateral recess there is a further nucleus less closely associated with the ependyma.The distribution of fluorescent fibres is described and the dispositions of the aminergic nuclei compared to those of other teleosts.  相似文献   

6.
Summary The hypothalamohypophyseal system of the mouse, rat, guinea-pig, cat, dog and monkey (Macaca mulatta) was studied with the fluorescence method for catecholamine-containing neurons developed by Falck et al. (1962). The fluorescent fibers are prominent in the external layer and around the primary portal plexus of the infundibulum and in the peripheral region of the neural lobe of these animals, particulary on the external surface and surrounding the primary capillary loops. These fluorescent fibers are connected with fluorescent cells in the arcuate nuclei, and this connection coincides with the tuberohypophyseal system. The neurons of this system have a particular affinity for dopamine, possibly due to their own content of dopamine. In the supraoptic and paraventricular nuclei, no fluorescent cells were found. In the pars intermedia, we also found catecholamine-containing fibers.The presence of catecholamine-containing fibers in the adeno- and neurohypophysis are considered in relation to other data derived from fluorescence and electron microscopy.  相似文献   

7.
The development of the hypothalamic melanin-concentrating hormone (MCH) system of the teleost Sparus auratus has been studied by immunocytochemistry using an anti-salmon MCH serum. Immunoreactive perikarya and fibers are found in embryos, larvae, and juvenile specimens. In juveniles, most labeled neurons are present in the nucleus lateralis tuberis; some are dispersed in the nucleus recessus lateralis and nucleus periventricularis posterior. From the nucleus lateralis tuberis, MCH neurons project a conspicuous tract of fibers to the ventral hypothalamus; this penetrates the pituitary stalk and reaches the neurohypophysis. Most fibers end close to the cells of the pars intermedia, and some reach the adenohypophysial rostral pars distalis. Immunoreactive fibers can also be seen in extrahypophysial localizations, such as the preoptic region and the nucleus sacci vasculosi. In embryos, MCH-immunoreactive neurons first appear at 36 h post-fertilization in the ventrolateral margin of the developing hypothalamus. In larvae, at 4 days post-hatching, perikarya can be observed in the ventrolateral border of the hypothalamus and in the mid-hypothalamus, near the ventricle. At 26 days post-hatching, MCH perikarya are restricted to the nucleus lateralis tuberis. The neurohypophysis possesses MCH-immunoreactive fibers from the second day post-hatching. The results indicate that MCH plays a role in larval development with respect to skin melanophores and cells that secrete melanocyte-stimulating hormone. Received: 4 April 1995 / Accepted: 17 July 1995  相似文献   

8.
Summary The brain of the Pacific hagfish, Eptatretus stouti, was studied immunocytochemically using antisera against somatostatin (SRIH), arginine vasopressin (AVP), and adrenocorticotropic hormone (ACTH). SRIH-immunoreactive perikarya were distributed bilaterally in the postoptic nucleus and in the hypothalamic nucleus. Although several short, stained fibers were observed in the vicinity of the perikarya, SRIH-immunoreactivity was not found in the neurohypophysis, nor in other parts of the brain. On the other hand, presumed arginine vasotocin (AVT) perikarya were distributed in an arc-shaped region extending from the posterior part of the preoptic nucleus to the anterior-most end of the hypothalamic nucleus and projected their fibers to the neurohypophysis. Most presumptive AVT perikarya were located close to the paired prehypophysial arteries near the anterior end of the postoptic nucleus. In the neurohypophysis, abundant presumptive AVT-fibers terminated in the posterior dorsal wall, although some fibers terminated in the anterior dorsal wall and only a few fiber endings were found in the ventral wall. No ACTH-positive cells were detected in the hagfish brain or in the pituitary gland.Supported from a grant from the National Science Foundation PCM 8141393  相似文献   

9.
Abstract Two endocrine cell types, PbH+ and PAS+ cells, were recognized in the pars intermedia (PI) of the roach, Leuciscus rutilus, by light and electron microscopy. They can be distinguished by the appearance of their secretory granules. The PAS+ cells stain with toluidine blue in semithin sections as opposed to the PbH+ cells. After 5 days' treatment with metopirone the PbH+ cells are highly activated whereas the PAS+ cells show no response. The PbH+ cells are assumed to produce MSH. In roaches adapted to diluted sea water (10%) the transfer to fresh water for 1—1 1/2 hours or reserpine injections for the same period had no notable effect on neither cell type. Three kinds of axons innervate the PI. Two of these, which have granules averaging 111 nm and 151 nm in diameter, originate in the nucleus preopticus (NPO). The third type of axons has granules of an average size of 74 nm and is probably aminergic. The glia cells in this part of the neurohypophysis (NH) are granular pituicytes, which are innervated by all three axon types. The border between the NH and the PI is composed of a double basement membrane from which a network extends into the NH. This network, the basement membrane and the capillaries are the main sites for the terminations of the axons although nerve fibers also invade the endocrine tissue. Only axon type 3 was observed to synapse frequently with the PbH+ cells.  相似文献   

10.
The proximal neurosecretory contact region (PNCR) of the lamprey, a homologue of the median eminence of tetrapods, was studied by light, fluorescence and electron microscopy. Paraldehyde fuchsin-positive neurosecretory fibers are seen mainly in the central part of the rostral subdivision of the PNCR. The Falck-Hillarp technique reveals a weak, mainly diffuse yellow-green fluorescence in the PNCR. The ultrastructure of the tanycyte layer of the PNCR is very similar to that in the neurohypophysis of the same species, although the funnel-shaped protrusions of the third ventricle in the rostral part of the PNCR are more frequent than in the neurophypophysis. Peptidergic A1 and A2 neurosecretory fibers are characterized by neurosecretory granules of 120-200 nm and 100-150 nm in diameter, respectively. Monoaminergic B type fibers contain granules 80-100 nm in diameter. Neurosecretory terminals and the vascular endfeet of tanycytes make contact with the basement membrane of the avascular connective tissue layer separating the PNCR from the hypophysial pars distalis. It is suggested that both peptide and monoamine neurohormones diffuse through the thick connective tissue septa into the underlying blood vessels which supply the pars distalis and thus affect the function of its glandular cells.  相似文献   

11.
Summary Distribution of monoamine oxidase (MAO) was histochemically examined in the hypothalamo-hypophysial region of the eel (Anguilla japonica) and the medaka (Oryzias latipes) with a modified Glenner's tryptamine-tetrazolium method. The hypothalamic neurosecretory cells showed very weak MAO activity in their perikarya. MAO-positive fibers were present in close contact with the neurosecretory cells, suggesting that monoaminergic fibers participate in the control of neurosecretory cell activity. The nucleus lateralis tuberis (NLT) contained cells exhibiting strong MAO activity. These cells must be monoaminergic neurons.In the anterior region of the neurohypophysis of both eel and medaka, two bundles of MAO-positive fibers originating from the NLT proceed down along each side of the third ventricle into the pars distalis. This suggests that monoaminergic neurons of the NLT are involved in the release of hormones from the pars distalis. In addition to these tracts, numerous MAO-positive fibers proceed backward from the post-optic area and end around the blood capillaries located between the neurohypophysis and the pars intermedia in both species.I wish to express my gratitude to Prof. H. Kobayashi for his valuable advice during the course of this study. I am indebted to Prof. S. Uchida, Ocean Research Institute, University of Tokyo, for supplying the eels.  相似文献   

12.
Summary Melanin-concentrating hormone (MCH) has been purified from the chum salmon pituitary. Its complete amino acid sequence has recently been established. To identify the precise site of origin of MCH, immunostaining was performed in the brain and pituitary gland of the chum salmon and the rainbow trout using a highly sensitive and specific antiserum raised against synthetic MCH. In these two salmonid species immunoreactivity for MCH was detected in neurons and neuronal processes in the pars lateralis of the nucleus lateralis tuberis (NLT) in the basal hypothalamus. Numerous positive-staining processes of these MCH-neurons project to the pituitary gland, extending into neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. No pituitary cells showed cross-reactivity. These results suggest that MCH is biosynthesized in the neurons of the NLT/pars lateralis and released in the neurohypophysis. On the other hand, prominent but less numerous MCH-positive processes could be traced to the pretectal area in which projection of both optic and pineal fibers has been detected using tracers. This observation suggests that the synthesis and/or release of MCH might be under the influence of either of these photosensory neurons. Moreover, the existence of an extrahypothalamic projection from MCH-positive neurons suggests that, in addition to melanin-concentration, MCH might be involved in other neuronal functions, perhaps serving as neuromodulator in the brain.  相似文献   

13.
Summary The distribution of monoamines in the diencephalon and pituitary of the dogfish, Scyliorhinus canicula, has been investigated using the histochemical fluorescence technique of Falck and Hillarp (Falck and Owman, 1965). Terminals of monoamine-containing axons were found in the neurointermediate lobe of the pituitary and the axons were traced, by means of nialamide and L-dopa treatment and lesions, to the nucleus medius hypothalamicus. A separate hypothalamic system converging on the anterior median eminence and the occurrence of aminergic cells in the nuclei lobi inferiores and nucleus medius hypothalamicus were similarly demonstrated. Normal fish show a bilateral uncrossed tegmental tract and two areas of catecholamine-containing neurones in modified ependymal organs. The organum vasculosum hypothalami includes both primary catecholamine and 5-hydroxytryptamine-containing cell types whilst the organum vasculosum praeopticum has only the former type. Both organs contain cells which send club-like processes into the third ventricle. The subcommissural organ does not contain monoamines.The role of hypothalamic catecholamine systems in the regulation of pituitary function is discussed.  相似文献   

14.
Distribution of biogenic amines in the diencephalon of the advanced teleost Chelon labrosus was investigated by formaldehyde-induced fluorescence. We have found three closely interrelated bright yellow-green fluorescent monoaminergic cell groups having numerous cerebrospinal fluid-contacting cells with dendritic processes that protrude into the lumen of the third ventricle. The most rostral of them, the organon vasculosum hypothalami, located dorsally at the mid and caudal hypothalamus level, showed under electron microscopy some monoaminergic cells and others with an abundant smooth endoplasmic reticulum. The cerebrospinal fluid-contacting processes of both cell types, in association with numerous fibres, terminal buttons and some capillaries, constitute a thick and complex intraventricular mat. The other two fluorescent regions, nucleus recessi lateralis and nucleus recessi posterioris, border the lateral and posterior recesses of the hypothalamus. The ultrastructural characteristics of the organon vasculosum hypothalami and its intraventricular mat suggest a function in the regulation of chemical changes in the cerebrospinal fluid. These monoaminergic regions probably represent three cell masses originated from a single region in primitive fish.  相似文献   

15.
Summary Immunostaining of brain and pituitary sections of teleost fishes (eels, salmonidae, cyprinidae, gourami, sculpin, mullet) with anti porcine galanin (GAL) revealed the presence of immunoreactive (ir) perikarya and a rich network of fibers. Ir-perikarya were located rostrodorsally to the recessus preopticus, and in the posterior tuberal hypothalamus. Ir-fibers were abundant in basal telencephalon and around diencephalic ventricular recesses but never contacted their lumen. Furthermore, they were observed in basal hypothalamus, brainstem and ventral medulla. Ir-fibers passed along corticotropic (ACTH), gonadotropic cells and somatotropes (GH cells) in eel and trout pars distalis, but rarely ended in caudal neurohypophysis. In goldsfish pituitary ir-fibers occurred in neural digitations and among different cell types which however did not contain a GAL-like peptide. The relation GAL fibers/GH cells appeared more evident in species with a high growth rate. The other species showed a similar distribution of brain GAL. In eels and trout, ir-perikarya were not observed in areas containing somatostatin, GH- and ACTH-releasing factor, and ACTH-like perikarya, suggesting that GAL did not coexist with these peptides. The widespread distribution of a GAL-like peptide in teleost brain suggests that it could play a role of neurotransmitter and/or neuromodulator and regulate the secretion of adenohypophysial hormone(s). Abbreviations used in the text: GAL galanin. In the brain: CSF cerebrospinal fluid; NLT nucleus lateralis tuberis; NPO nucleus preopticus; NPP nucleus preopticus periventricularis; NPVa nucleus periventricularis anterior; NRP nucleus recessus posterioris; RI recessus infundibularis; RL recessus lateralis; RPO recessus preopticus. In the pituitary: ACTH corticotropin; CRF corticotropin-releasing factor; GH growth hormone; GRF growth hormone-releasing factor; GTH gonadotropin; MSH melanotropin; NH neurohypophysis; NIL: neurointermediate lobe; PPD proximal pars distalis; RPD proximal pars distalis  相似文献   

16.
Summary Immunocytochemical investigations show that somatostatin (SRIF)-like immunoreactive material is present in the brain and the pituitary of nine different species of teleosts. In the brain, immunoreactive perikarya and fibers are observed in the preoptic periventricular nucleus, the entopeduncular nucleus, the anterior periventricular nucleus, and the nucleus lateralis tuberis. In the pituitary, SRIF-like-immunoreactive fibers occur in the proximal pars distalis (PPD), which contains the growth hormone (GH)-secreting cells. Nerve fibers are scattered among GH cells (cyprinids), or end on the basal lamina at the neuroglandular interface of the PPD (eel, salmonids). In the eel, the proximal neurohypophysis does not penetrate deeply into the PPD that is very poorly vascularized. In some species, e.g. Myoxocephalus, SRIF-like immunoreactive fibers are also observed in the caudal neurohypophysis, and even among MSH cells of the pars intermedia.In long-term starved carps and eels, the amount of SRIF-like material in the pituitary is clearly reduced. A possible role of SRIF in the concomitant stimulation of GH cells is discussed.  相似文献   

17.
Abstract Numerous fluorescent varicosities surround most of the caudal neurosecretory neurons and also regularly occur among pars intermedia cells of the adenohypophysis in the teleost, Gillichthys mirabilis. The color of the varicosities, as well as their responses to pharmacological treatments, is diagnostic of catecholaminergic neurons and processes. No fluorescence characteristic of monamines is found in the rostral pars distalis, in the proximal pars distalis or in the cells of the nucleus lateralis tuberis (NLT), although fluorescent varicosities are found within the ventral hypothalamus in the vicinity of the NLT. Bilateral clusters of fluorescent cell bodies are located in the ventral hypothalamus (posterior to the NLT); some of these cells border the neurohypophysis. Fluorescent tracts from these cell clusters extend to a pair of elongate nuclei of nonfluorescent neurons which are surrounded by fluorescent varicosities. Alteration of osmotic conditions did not effect the fluorescence, except for the caudal neurosecretory cells of fish exposed to fresh water for long periods. Adrenergic nervous input thus seems to be an important component of both the cranial and caudal neurosecretory systems.  相似文献   

18.
Summary Monoamine fluorescence was examined in the ventral hypothalamus of the Japanese quail, Coturnix coturnix japonica after medial basal hypothalamic deafferentation. In sham-operated control birds, numerous yellow-green fluorescent fibers were observed in the median eminence and the nucleus tuberis. In the area of the paraventricular organ, a number of fluorescent fibers and cell bodies were observed. In birds with deafferented hypothalami, fluorescence disappeared both in the median eminence and the nucleus tuberis. In the area of the paraventricular organ, which was within the area of deafferentation, fluorescence of neuronal perikarya did not change, but fluorescent fibers decreased markedly in number. Disappearance of monoamine fluorescence in the median eminence and the nucleus tuberis is discussed in relation to the tanycyte absorptive function and gonadal development.Supported by Grants from the Ministry of Education to Professors T. Bando and H. Kobayashi, and a Grant from the Ford Foundation to Prof. H. Kobayashi.  相似文献   

19.
Three endocrine cell types were recognized in the proximal pars distalis (PPD) of the roach, Leuciscus rutilus, by electron microscopy. Two of these cell types are basophilic and assumed to be gonadotropic. The third cell type is acidophilic and its similarity to somatotropic (STH) cells is evident. Green fluorescent cells corresponding to cells with dense core vesicles of about 85 nm are scattered between the PPD and the proximal neurohypophysis (PNH). Their possible content of a catecholamine was demonstrated with microspectrofluorometric analyses. Four axon types with granules 65, 81, 110 and 137 nm in average diameter terminate at the basement membrane. Only fibers with granules of 81 nm enter the PPD to make synapses with the STH cells. Extensions of the basement membrane are continuous with the perivascular space and penetrate the endocrine tissue. It is postulated that axon terminals on the basement membrane are functionally equivalent to synaptic contacts on the endocrine cells. Axon type 4 has granules which in sizes correspond to those of cells in lateral and ventrolateral parts of the nucleus lateralis tuberis (NLT). A similar correlation is possible between axon type 3 and other cells in the NLT. This is in accordance with earlier conclusions of a regulation of the gonadotropic cells from the lateral (posterior) parts of the NLT.  相似文献   

20.
Summary The zona radiata from unactivated and activated eggs from chinook salmon (Oncorhynchus tshawytscha), chum salmon (O. kisutch), pink salmon (O. gorbuscha), brown trout (Salmo trutta), rainbow trout (S. gairdneri) and lake trout (Salvelinus namaycush) were examined using scanning and transmission microscopy. The zona radiata in all species examined consisted of an outer adhesive coating, a thin densely staining zona radiata externa with pore canal plugs and a thick, fibrous zona radiata interna with a fibrous network on the inner surface. There was a two layer adhesive coating over the zona radiata externa in all species except pink salmon in which only one layer was observed. There were structural differences among species in the adhesive layer, zona radiata externa and plugs in the pore-canal openings.Scientific Journal Series, Paper No. 14,627, Minnesota Agricultural Experiment StationPartially funded by Minnesota Sea Grant NA-82-AA 12-000-39, Project RF-12, Minnesota Sea Grant Contribution 168  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号