首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
p13(suc1) (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G(1) cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G(1) cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G(1) cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G(1) cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G(1) phase in budding yeast.  相似文献   

3.
4.
F Cvrckov  K Nasmyth 《The EMBO journal》1993,12(13):5277-5286
Cyclin-dependent protein kinases have a central role in cell cycle regulation. In Saccharomyces cerevisiae, Cdc28 kinase and the G1 cyclins Cln1, 2 and 3 are required for DNA replication, duplication of the spindle pole body and bud emergence. These three independent processes occur simultaneously in late G1 when the cells reach a critical size, an event known as Start. At least one of the three Clns is necessary for Start. Cln3 is believed to activate Cln1 and Cln2, which can then stimulate their own accumulation by means of a positive feedback loop. They (or Cln3) also activate another pair of cyclins, Clb5 and 6, involved in initiating S phase. Little is known about the role of Clns in spindle pole body duplication and budding. We report here the isolation of a gene (CLA2/BUD2/ERC25) that codes for a homologue of mammalian Ras-associated GTPase-activating proteins (GAPs) and is necessary for budding only in cln1 cln2 cells. This suggests that Cln1 and Cln2 may have a direct role in bud formation.  相似文献   

5.
The G1 cyclin Cln3 is a key activator of cell-cycle entry in budding yeast. Here we show that Whi3, a negative G1 regulator of Cln3, interacts in vivo with the cyclin-dependent kinase Cdc28 and regulates its localization in the cell. Efficient interaction with Cdc28 depends on an N-terminal domain of Whi3 that is also required for cytoplasmic localization of Cdc28, and for proper regulation of G1 length and filamentous growth. On the other hand, nuclear accumulation of Cdc28 requires the nuclear localization signal of Cln3, which is also found in Whi3 complexes. Both Cln3 and Cdc28 are mainly cytoplasmic during early G1, and become nuclear in late G1. However, Whi3-deficient cells show a distinct nuclear accumulation of Cln3 and Cdc28 already in early G1. We propose that Whi3 constitutes a cytoplasmic retention device for Cln3-Cdc28 complexes, thus defining a key G1 event in yeast cells.  相似文献   

6.
Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins   总被引:52,自引:18,他引:34       下载免费PDF全文
《The Journal of cell biology》1993,120(6):1305-1320
Analysis of cell cycle regulation in the budding yeast Saccharomyces cerevisiae has shown that a central regulatory protein kinase, Cdc28, undergoes changes in activity through the cell cycle by associating with distinct groups of cyclins that accumulate at different times. The various cyclin/Cdc28 complexes control different aspects of cell cycle progression, including the commitment step known as START and mitosis. We found that altering the activity of Cdc28 had profound effects on morphogenesis during the yeast cell cycle. Our results suggest that activation of Cdc28 by G1 cyclins (Cln1, Cln2, or Cln3) in unbudded G1 cells triggers polarization of the cortical actin cytoskeleton to a specialized pre-bud site at one end of the cell, while activation of Cdc28 by mitotic cyclins (Clb1 or Clb2) in budded G2 cells causes depolarization of the cortical actin cytoskeleton and secretory apparatus. Inactivation of Cdc28 following cyclin destruction in mitosis triggers redistribution of cortical actin structures to the neck region for cytokinesis. In the case of pre-bud site assembly following START, we found that the actin rearrangement could be triggered by Cln/Cdc28 activation in the absence of de novo protein synthesis, suggesting that the kinase may directly phosphorylate substrates (such as actin-binding proteins) that regulate actin distribution in cells.  相似文献   

7.
M Tyers  G Tokiwa  R Nash    B Futcher 《The EMBO journal》1992,11(5):1773-1784
In Saccharomyces cerevisiae, several of the proteins involved in the Start decision have been identified; these include the Cdc28 protein kinase and three cyclin-like proteins, Cln1, Cln2 and Cln3. We find that Cln3 is a very unstable, low abundance protein. In contrast, the truncated Cln3-1 protein is stable, suggesting that the PEST-rich C-terminal third of Cln3 is necessary for rapid turnover. Cln3 associates with Cdc28 to form an active kinase complex that phosphorylates Cln3 itself and a co-precipitated substrate of 45 kDa. The cdc34-2 allele, which encodes a defective ubiquitin conjugating enzyme, dramatically increases the kinase activity associated with Cln3, but does not affect the half-life of Cln3. The Cln--Cdc28 complex is inactivated by treatment with non-specific phosphatases; prolonged incubation with ATP restores kinase activity to the dephosphorylated kinase complex. It is thus possible that phosphate residues essential for Cln-Cdc28 kinase activity are added autocatalytically. The multiple post-translational controls on Cln3 activity may help Cln3 tether division to growth.  相似文献   

8.
9.
p34Cdc28-mediated control of Cln3 cyclin degradation.   总被引:27,自引:10,他引:17       下载免费PDF全文
Cln3 cyclin of the budding yeast Saccharomyces cerevisiae is a key regulator of Start, a cell cycle event in G1 phase at which cells become committed to division. The time of Start is sensitive to Cln3 levels, which in turn depend on the balance between synthesis and rapid degradation. Here we report that the breakdown of Cln3 is ubiquitin dependent and involves the ubiquitin-conjugating enzyme Cdc34 (Ubc3). The C-terminal tail of Cln3 functions as a transferable signal for degradation. Sequences important for Cln3 degradation are spread throughout the tail and consist largely of PEST elements, which have been previously suggested to target certain proteins for rapid turnover. The Cln3 tail also appears to contain multiple phosphorylation sites, and both phosphorylation and degradation of Cln3 are deficient in a cdc28ts mutant at the nonpermissive temperature. A point mutation at Ser-468, which lies within a Cdc28 kinase consensus site, causes approximately fivefold stabilization of a Cln3-beta-galactosidase fusion protein that contains a portion of the Cln3 tail and strongly reduces the phosphorylation of this protein. These data indicate that the degradation of Cln3 involves CDC28-dependent phosphorylation events.  相似文献   

10.
Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway.   总被引:30,自引:4,他引:26       下载免费PDF全文
Recombinant G1 cyclin Cln2p can bind to and stimulate the protein kinase activity of p34CDC28 (Cdc28p) in an extract derived from cyclin-depleted and G1-arrested Saccharomyces cerevisiae cells. Upon activating Cdc28p, Cln2p is extensively phosphorylated and conjugated with multiubiquitin chains. Ubiquitination of Cln2p in vitro requires the Cdc34p ubiquitin-conjugating enzyme, Cdc28p, protein phosphorylation and unidentified factors in yeast extract. Ubiquitination of Cln2p by Cdc34p contributes to the instability of Cln2p in vivo, as the rate of Cln2p degradation is reduced in cdc34ts cells. These results provide a molecular framework for G1 cyclin instability and suggest that a multicomponent, regulated pathway specifies the selective ubiquitination of G1 cyclins.  相似文献   

11.
Rho1p is an essential small GTPase that plays a key role in the morphogenesis of Saccharomyces cerevisiae. We show here that the activation of Rho1p is regulated by a cyclin-dependent kinase (CDK). Rho1p is activated at the G1/S transition at the incipient-bud sites by the Cln2p (G1 cyclin) and Cdc28p (CDK) complex, in a process mediated by Tus1p, a guanine nucleotide exchange factor for Rho1p. Tus1p interacts physically with Cln2p/Cdc28p and is phosphorylated in a Cln2p/Cdc28p-dependent manner. CDK phosphorylation consensus sites in Tus1p are required for both Cln2p-dependent activation of Rho1p and polarized organization of the actin cytoskeleton. We propose that Cln2p/Cdc28p-dependent phosphorylation of Tus1p is required for appropriate temporal and spatial activation of Rho1p at the G1/S transition.  相似文献   

12.
Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.  相似文献   

13.
In yeast, the pheromone α-factor acts as an antiproliferative factor that induces G1 arrest and cellular differentiation. Previous data have indicated that Far1, a factor dedicated to pheromone-induced cell cycle arrest, is under positive and negative posttranslational regulation. Phosphorylation by the pheromone-stimulated mitogen-activated protein (MAP) kinase Fus3 has been thought to enhance the binding of Far1 to G1-specific cyclin-dependent kinase (Cdk) complexes, thereby inhibiting their catalytic activity. Cdk-dependent phosphorylation events were invoked to account for the high instability of Far1 outside early G1 phase. To confirm any functional role of Far1 phosphorylation, we undertook a systematic mutational analysis of potential MAP kinase and Cdk recognition motifs. Two putative phosphorylation sites that strongly affect Far1 behavior were identified. A change of serine 87 to alanine prevents the cell cycle-dependent degradation of Far1, causing enhanced sensitivity to pheromone. In contrast, threonine 306 seems to be an important recipient of an activating modification, as substitutions at this position abolish the G1 arrest function of Far1. Only the phosphorylated wild-type Far1 protein, not the T306-to-A substitution product, can be found in stable association with the Cdc28-Cln2 complex. Surprisingly, Far1-associated Cdc28-Cln2 complexes are at best moderately inhibited in immunoprecipitation kinase assays, suggesting unconventional inhibitory mechanisms of Far1.  相似文献   

14.
15.
16.
Degradation of Saccharomyces cerevisiae G(1) cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCF(Grr1)). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (Delta N-Sic1), a substrate of SCF(Cdc4), results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to Delta N-Sic1 switches degradation of Sic1 from SCF(Cdc4) to SCF(Grr1). Delta N-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCF(Cdc4) target for SCF(Grr1)-mediated degradation by the ubiquitin-proteasome pathway.  相似文献   

17.
18.
Proteolysis of the yeast G(1) cyclins is triggered by their Cdc28-dependent phosphorylation. Phosphorylated Cln1 and Cln2 are ubiquitinated by the SCF-Grr1 complex and then degraded by the 26 S proteasome. In this study, we identified a cak1 allele in a genetic screen for mutants that stabilize the yeast G(1) cyclins. Further characterization showed that Cln2HA was hypophosphorylated, unable to bind Cdc28, and stabilized in cak1 mutants at the restrictive temperature. Hypophosphorylation of Cln2HA could thus explain its stabilization. To test this possibility, we expressed a Cak1-independent mutant of Cdc28 (Cdc28-43244) in cak1 mutants and found that Cln2HA phosphorylation was restored, but surprisingly, the phospho-Cln2HA was stabilized. When bound to Cdc28-43244, Cln2HA was recognized and polyubiquitinated by SCF-Grr1. The Cdc28-43244 mutant thus reveals an unexpected complexity in the degradation of polyubiquitinated Cln2HA by the proteasome.  相似文献   

19.
G1 cyclin Cln3 plays a key role in linking cell growth and proliferation in budding yeast. It is generally assumed that Cln3, which is present throughout G1, accumulates passively in the nucleus until a threshold is reached to trigger cell cycle entry. We show here that Cln3 is retained bound to the ER in early G1 cells. ER retention requires binding of Cln3 to the cyclin-dependent kinase Cdc28, a fraction of which also associates to the ER. Cln3 contains a chaperone-regulatory Ji domain that counteracts Ydj1, a J chaperone essential for ER release and nuclear accumulation of Cln3 in late G1. Finally, Ydj1 is limiting for release of Cln3 and timely entry into the cell cycle. As protein synthesis and ribosome assembly rates compromise chaperone availability, we hypothesize that Ydj1 transmits growth capacity information to the cell cycle for setting efficient size/ploidy ratios.  相似文献   

20.
In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号