首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The major glycoproteins that bind pokeweek B-cell mitogen (Pa-1) and pokeweed T-cell mitogen (Pa-2) were isolated and identified from bone-marrow-derived lymphocytes (B-cells) and thymus-derived lymphocytes (T-cells) of C3H/He mice. The surfaces of the cells were 125I-labelled by using the enzyme lactoperoxidase, and the plasma membranes were isolated from the 125I-labelled cells. These membranes were solubilized with Triton X-100 and subjected to affinity chromatography on the affinity adsorbent prepared by coupling mitogen Pa-1 or Pa-2 to activated Sepharose 4B. The glycoproteins specifically eluted with di-N-acetylchitobiose from the affinity adsorbents were analysed according to their mobility on polyacrylamide-gel electrophoresis in sodium dodecyl sulphate. These glycoproteins were further identified by immunoprecipitation with specific antisera. Immunoglobulins, possibly immunoglobulins M and D, were identified in the eluate from the B-cell membranes, but they were not detected in the eluate from the T-cell membranes. The histocompatibility-2-complex proteins (H-2D, H-2K and Ia antigens) were found to be major receptor sites for the pokeweed mitogens on both B-cells and T-cells. However, mitogen Pa-1 (B-cell) has a stronger affinity to Ia antigens than does mitogen Pa-2 (T-cell).  相似文献   

2.
S F Nilsson  M J Waxdal 《Biochemistry》1976,15(12):2698-2705
The major glycoproteins which bind concanavalin A have been isolated and identified from murine spleen cells, thymocytes,and purified thymus-derived (T) lymphocytes, and from the spleen cells of congenitally athymic (nude) mice. The cells were radiolabeled by lactoperoxidase catalyzed 125I iodination or by culturing the cells in media containing [3H]leucine or [3H]fucose. The cell membrane was solubilized with Nonidet P-40 and the concanavalin A binding proteins were isolated by affinity chromatography and analyzed according to their mobility on polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The major proteins from various lymphocyte preparations were identified by immunoprecipitation with specific antisera. The molecules coded by the histocompatibility-2 complex acted as concanavalin A binding proteins H-2K and H-2D were isolated from T lymphocytes, thymocytes, and bone marrow derived (B) lymphocytes. The Ia antigens were identified from B lymphocytes and tentatively identified from T lymphocytes. In addition to these H-2 complex proteins, immunoglobulin M and D on B lymphocytes also bound concanavalin A binding. All these glycoproteins have previously been identified as cell surface molecules. The presence of certain minor unidentified concanavalin A binding proteins on lymphoid cells is indicated.  相似文献   

3.
Lipoprotein from the outer membrane of Escherichia coli and a synthetic analogue of its N-terminal lipopeptide part, tripalmitoyl-pentapeptide, constitute potent mitogens and polyclonal activators of murine B-lymphocytes in vitro. When entering the circulation after intravenous administration in experimental animals, they interact with the humoral and cellular elements of the blood, which results in splenomegaly and B-lymphocyte activation in vivo. We investigated lipopeptide-binding proteins in normal mouse serum and on splenocytes. By affinity chromatography using an affinity adsorbent prepared by coupling the lipoprotein analogue to CPG-aminopropyl derivatized glass beads, we could enrich one major binding protein for tripalmitoyl-pentapeptide from mouse serum, which was identified as albumin. Binding proteins on lymphocytes were determined as follows: Spleen cells of C3H/HeJ mice were activated by the B cell mitogen lipoprotein, biosynthetically labelled with [3H]leucine, and solubilized by the nonionic detergent Nonidet P40. From the cell lysate, binding proteins were isolated by affinity chromatography: As analysed by polyacrylamide gel electrophoresis and autoradiography, proteins with molecular masses of 24, 27, 33, 45, 53, 61 and 71 kDa were eluted from the tripalmitoyl-pentapeptide adsorbent. The eluted material was further enriched for glycoproteins by Lens culinaris lectin affinity chromatography, and immunoprecipitation studies were performed with the glycoprotein fractions using alloantisera specific for class I and class II gene products of the H-2k haplotype. We could show that both class I and class II MHC glycoproteins could be enriched on the tripalmitoyl-pentapeptide column. This finding might suggest that, among other proteins, MHC-encoded proteins are involved in lymphocyte activation by a mitogenic lipopeptide.  相似文献   

4.
The plasma membrane components of five human B-cell lines and three human T-cell lines were separated by dodecyl sulfate polyacrylamide gel electrophoresis, incubated with the radioactive labeled lectins from lentil, castor bean, wheat germ, Phaseolus bean, peanut, gorse and the Roman snail and the molecular weights of the binding sites determined. The lentil, castor bean and wheat germ lectin bound to multiple components from molecular weights (Mr) 20 000 to 200 000 within the plasma membranes, whereas peanut lectin bound preferentially to glycoproteins of Mr 150 000 and 83 000 in B-cells, and 150 000 and 130 000 in T-cells. The gorse lectin bound to a 220 000 component in B-cells which was not labeled in T-cells.  相似文献   

5.
Regional differentiation of the sea urchin sperm plasma membrane   总被引:3,自引:0,他引:3  
In order to study the molecular basis for the functional localization and behavioral control of sperm, we have partially characterized plasma membranes prepared from isolated head and tail fractions. These membranes have similar amounts of the Na+ pump (as reflected by (Na+,K+)-ATPase activity), whereas they differ in protein composition, binding sites for Ca2+ channel antagonists, and in the localization of enzymes of cyclic nucleotide metabolism. The Ca2+ channel antagonist D600 (and related phenylalkylamines) binds to plasma membrane preparations from sperm heads and tails with much higher affinity than do the dihydropyridine antagonists. This binding is inhibited greatly by certain monovalent (but not divalent) ions, especially Na+, Tris+, glycine ethyl ester+, and methylamine+.K+,Li+, and choline+ are less effective. In media of ionic composition resembling seawater, sperm tail membranes exhibit 6.5-fold more binding sites for D600 than do membranes from sperm head. cGMP phosphodiesterase and adenylate cyclase are also enriched in plasma membranes from the tail. Thus, the highly polarized sperm cell exhibits a regional differentiation of plasma membrane proteins implicated in behavioral control.  相似文献   

6.
The age-related loss of immune function, which is primarily due to loss of T-lymphocyte function, is also associated with accumulation in spleen lymphocytes of autofluorescent products indicative of peroxidation damage. In this study, we examined T-cell membranes for age-related changes which could be related to lipid peroxidation. Using fluorescence spectroscopy of CHCl3:CH3OH membrane extracts, we observed that old T-cells have a 2-fold greater accumulation of fluorescent products than old B-cells and that young T-cells, when exposed to free radicals in an in vitro system, accumulate significantly more fluorescent products over time than young B-cells. We used fluorescence polarization to show that young T-cell membranes are more fluid than young B-cell membranes. However, T-cell membrane fluidity decreases with age, whereas B-cell membrane fluidity does not change; in old mice, T-cell membranes are significantly less fluid than old B-cell membranes. Using two-dimensional electrophoresis, we showed that membrane extracts of old T-cells contain many more proteins than extracts of young T-cells. Our results indicate that age-related changes occur in T-cell membranes which could be due to their increased susceptibility to lipid peroxidation and these changes may contribute to the age-related decline in immune function.  相似文献   

7.
The hypnotic drug quazepam and its active metabolite 2-oxo-quazepam (2-oxo-quaz) are two benzodiazepines (BZ) containing a trifluoroethyl moiety on the ring nitrogen at position 1, characterized by their preferential affinity for Type I BZ recognition sites. In the present study we characterized the binding of 3H-2-oxo-quaz in discrete areas of the human brain. Saturation analysis demonstrated specific and saturable binding of 3H-2-oxo-quaz to membrane preparations from human cerebellum. Hill plot analysis of displacement curves of 3H-flunitrazepam (3H-FNT) binding by 2-oxo-quaz yielded Hill coefficients of approximately 1 in the cerebellum and significantly less than 1 in the cerebral cortex, hippocampus, caudate nucleus, thalamus and pons. Self and cross displacement curves for 3H-FNT and 3H-2-oxo-quaz binding in these brain areas indicated that 2-oxo-quaz binds with different affinities to two populations of binding sites. High affinity binding sites were more abundant in the cerebellum (95% of total sites), cerebral cortex, hippocampus and thalamus, whereas low affinity sites were predominant in the caudate nucleus and pons. Competition studies of 3H-2-oxo-quaz (2 nM) and 3H-FNT (0.5 nM) using unlabelled ligands indicated that compounds which preferentially bind to Type I sites are more potent at displacing 3H-2-oxo-quaz than 3H-FNT from cerebral cortex membrane preparations. The results suggest that 3H-2-oxo-quaz may be used for selectively studying Type I BZ recognition sites in the human brain.  相似文献   

8.
Quazepam and 2-oxo-quazepam are novel benzodiazepines containing a trifluoroethyl substituent on the ring nitrogen at position #1. Detailed competition binding experiments (25 to 30 concs.) at 4 degrees C were undertaken with these compounds versus 3H-flunitrazepam using synaptic membranes from rat cortex or cerebellum. Unlike other benzodiazepines, both quazepam and 2-oxo-quazepam distinguished two populations of 3H-flunitrazepam binding sites in rat cortex which were present in roughly equal proportions and for which the compounds displayed a greater than 20-fold difference in affinity. In cerebellum, no such discrimination of sites was noted for 2-oxo-quazepam, but quazepam did distinguish a small, low affinity (15% of total) population of sites. 3H-2-oxo-quazepam was prepared and used in competition studies to substantiate the conclusion that these compounds discriminate two populations of benzodiazepine sites in rat cortex. This new radioligand was shown to specifically label BZ binding sites with high affinity in a saturable manner. The competition experiments were then conducted using 3H-2-oxo-quazepam at a radioligand concentration sufficiently low (0.5 nM) to ensure that only the higher affinity binding sites which 2-oxo-quazepam discriminates would be occupied. Competition experiments in both cortex and cerebellum under these conditions indicated single site binding for unlabelled quazepam and 2-oxo-quazepam in every instance. This suggests that 3H-2-oxo-quazepam should be a useful new tool for selectively labeling and studying the BZ1 population of benzodiazepine binding sites.  相似文献   

9.
The binding of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC or PAF, platelet-activating factor) to synaptic plasma membranes, microsomal membranes, and other rat cerebral cortex subcellular fractions was studied. Using several PAF-binding antagonists, three distinct sites were identified. Two of them were in intracellular membranes (microsomes) and one in synaptic plasma membranes. Microsomal membranes were prepared after obtaining a 43,500 x g pellet from the postmitochondrial supernatant and subsequent centrifugation at 105,000 x g of the resulting supernatant. Most plasma membrane markers were retained in the 43,500 x g pellet (Sun, G.Y., Huang, H.-M., Kelleher, J.A., Stubbs, E.B., Sun, A. Y. (1988) Neurochem. Int. 12, 69-77). Microsomes were purified by density-gradient centrifugation and marker enzymes showed relatively very low contamination by plasma membrane markers. Myelin and mitochondria were devoid of specific PAF binding. A site displaying the highest PAF-binding affinity reported to date in all cells and membranes (KD = 22.5 +/- 1.7 pM and Bmax 8.75 = fmol/mg protein), was found in the microsomal fraction. There was a second binding site in microsomal fractions (KD = 25.0 +/- 0.8 nM and Bmax = 0.96 pmol/mg protein. Ca2+ decreases PAF affinity for the microsomal binding sites. The third binding site displays relatively low specific PAF binding and is present in synaptosomal plasma membranes. Moreover, displacement curves by a wide variety of PAF antagonists indicated different affinities for each of the binding sites described here. These results indicate that PAF-binding sites are heterogeneous in rat cerebral cortex, and they imply that the microsomal membrane sites may be involved, at least in part, in intracellular events such as gene expression.  相似文献   

10.
We describe a general method for isolating a class of 40 kDa plasma membrane fatty acid binding proteins which have been identified previously only in rat liver and jejunum. Proteins extracted with 2 M salt from rat adipocyte and cardiac myocyte plasma membranes were subjected to preparative isoelectric focusing. Fractions with pI's greater than or equal to 9.0 were further purified by oleate-agarose affinity chromatography and HPLC. Each tissue yielded a single 40 kDa protein which co-chromatographed with [3H]-oleate on gel permeation HPLC, and reacted on Western blots with an antibody to the corresponding hepatic membrane protein. Related plasma membrane fatty acid binding proteins have now been isolated from each of the major sites of fatty acid transport.  相似文献   

11.
The involvement of G-proteins in the insulin signal transduction system has been studied in detail using the murine BC3H-1 myocyte system. Pertussis toxin (PT) treatment, previously shown to attenuate some of the metabolic effects of insulin in this cell line (Luttrell, L.M., Hewlett, E.L., Romero, G., and Rogol, A.D. (1988) J. Biol. Chem. 263, 6134-6141), abolished insulin-induced generation of diacylglycerol and inositolglycan mediators with no effects on either the autophosphorylation of the insulin receptor or the phosphorylation of the major endogenous substrates for insulin-stimulated tyrosine kinase activity (pp185 and pp42-45). In vitro ADP-ribosylation and immunoblotting studies suggest that the major PT substrate is a 40-kDa protein of the G alpha family. This protein band did not exhibit detectable tyrosine phosphorylation upon stimulation of either intact cells or cell membranes with insulin. In the presence of low concentrations of GTP, insulin treatment of isolated myocyte plasma membranes resulted in a small (30-40%) but significant stimulation of GTP hydrolysis. This effect was best observed in the presence of small concentrations of sodium dodecyl sulfate. The rate of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding to BC3H-1 membranes was also significantly increased in the presence of insulin. The effects of insulin on GTP hydrolysis and GTP gamma S binding were found to be dependent on the concentration of insulin. These effects were not detected in plasma membranes prepared from PT-pretreated BC3H-1 myocytes. In contrast, pretreatment with the B (inactive) subunit of PT did not alter the response of myocyte membranes to insulin. High affinity binding of [125I]iodoinsulin to myocyte plasma membranes was reduced by 60-70% in the presence of guanine nucleotides. Similar effects on insulin binding were produced by PT pretreatment of the cells. In contrast, adenine nucleotides had no effect on insulin binding. Scatchard analysis of the binding data showed that the observed effects of guanine nucleotides and PT on insulin binding resulted either from a reduction in the number of high affinity insulin binding sites or from a significant reduction of the affinity of insulin for its receptor. Low affinity binding sites did not appear to be affected by either guanine nucleotides nor PT pretreatment. These results provide substantial evidence suggestive of a noncovalent interaction between the insulin receptor and a regulatory G-protein system during the process of insulin signaling.  相似文献   

12.
Steroids must traverse the nuclear envelope before exerting their action at the chromatin. However, few studies have been done to elucidate the mechanism by which steroids traverse this membrane barrier. As first steps towards investigating the mechanism, we have characterized the binding sites for dexamethasone on male rat liver nuclear envelopes. The nuclear envelopes, prepared in the presence of dithiothreitol, were isolated from purified nuclei after treatment with DNase 1 at high pH. Binding of dexamethasone to the nuclear envelopes was measured after 16 h of incubation at 0-4 degrees C. At pH 7.4, only a single high capacity, low affinity binding site for dexamethasone was identified. However, at pH 8.6, two sites were identified; a low capacity, high affinity site and a high capacity, low affinity site. Adrenalectomy of the animal before preparation of the membranes caused loss of the high affinity site and reduction in the number of the lower affinity sites. Acute dexamethasone treatment of adrenalectomized rats resulted in the reappearance of the high affinity site but long term treatment with dexamethasone was required for complete restoration of the high affinity sites and reappearance of any of the low affinity sites. The steroid specificity of these nuclear envelope binding sites was different from that of the cytosolic glucocorticoid receptor, generally showing broader specificity. However, triamcinolone acetonide, which is a potent competitor for binding to the glucocorticoid receptor, did not complete effectively. The binding sites were sensitive to protease treatment and salt extraction studies revealed that the dexamethasone binding sites do not represent proteins non-specifically bound to the nuclear envelope. The affinity and the hormone responsiveness of the high affinity site are similar to those of the nuclear glucocorticoid receptor. Therefore, the nuclear envelope may be a site of action of glucocorticoids.  相似文献   

13.
Rat intestinal Golgi-enriched membrane fractions take up Ca2+ by a vitamin D-dependent process that has been shown to recover within 15 min of repletion of vitamin D-deficient animals with intravenous 1,25-dihydroxycholecalciferol. The present paper reports studies characterizing the Ca2+-binding sites of these membrane fractions. Equilibrium binding of Ca2+ at concentrations between 5 and 400 microM showed significant decreases at all concentrations in membranes derived from vitamin D-deficient animals when compared with normal control-diet-fed animals. The predominant class of binding sites had a relatively high affinity for Ca2+ (KD approx. 3 microM). Vitamin D-deficiency did not change the affinity of this class of site, but decreased the number from 347 +/- 26 to 168 +/- 50 nmol of Ca2+ bound/mg of protein (means +/- S.D.). Mg2+ inhibited binding only at low Ca2+ concentrations, and the characteristics of this binding suggested positive co-operativity between two binding sites. Equimolar concentrations of Zn2+, La3+, Pb2+ and Mn2+ inhibited Ca2+ binding by over 50%. Increased ionic strength decreased Ca2+ binding by no more than half. Binding was maximal at pH 7.5 and half-maximal at pH 6.3. The large number of binding sites with relatively high affinity for Ca2+ suggests that it is unlikely that this binding is to any specific protein or to non-specific sites present on many proteins, and that the most likely sites are lipid molecules.  相似文献   

14.
An endogenous inhibitor of L-[3H]quinuclinidinyl benzilate binding to the brain muscarinic acetylcholine receptor was identified. [3H]Quinuclinidinyl benzilate binding to rat brain synaptosomes was measured using a filtration assay. The inhibitor was prepared from several calf tissues and was found in highest specific activity in thymus. The loss of binding activity was slow, requiring a 30-40 min preincubation of the synaptosomes with the inhibitor, and reversed by removing the inhibitor by washing the membranes. Scatchard analysis of the binding data showed that the inhibition was noncompetitive resulting from both a decrease in affinity and a decrease in the number of binding sites. Zn2+ was required in low concentrations for this effect. Muscarinic acetylcholine receptor in synaptic membranes and in membranes free of most peripheral membrane proteins was still sensitive to inhibition. Preliminary characterization of the inhibitory molecule showed that it is of low molecular weight, moderately heat-stable, and acidic. The inhibitor was inactivated by reagents that are nonspecific for nucleophiles, but not by reagents specific for primary amine or thiol groups.  相似文献   

15.
This report describes Ca2+-dependent binding of 125I-labeled calmodulin (125I-CaM) to erythrocyte membranes and identification of two new CaM-binding proteins. Erythrocyte CaM labeled with 125I-Bolton Hunter reagent fully activated erythrocyte (Ca2+ + Mg2+)-ATPase. 125I-CaM bound to CaM depleted membranes in a Ca2+-dependent manner with a Ka of 6 x 10(-8) M Ca2+ and maximum binding at 4 x 10(-7) M Ca2+. Only the cytoplasmic surface of the membrane bound 125I-CaM. Binding was inhibited by unlabeled CaM and by trifluoperazine. Reduction of the free Ca2+ concentration or addition of trifluoperazine caused a slow reversal of binding. Nanomolar 125I-CaM required several hours to reach binding equilibrium, but the rate was much faster at higher concentrations. Scatchard plots of binding were curvilinear, and a class of high affinity sites was identified with a KD of 0.5 nM and estimated capacity of 400 sites per cell equivalent for inside-out vesicles (IOVs). The high affinity sites of IOVs most likely correspond to Ca2+ transporter since: (a) Ka of activation of (Ca2+ + Mg2+)-ATPase and KD for binding were nearly identical, and (b) partial digestion of IOVs with alpha-chymotrypsin produced activation of the (Ca2+ + Mg2+)-ATPase with loss of the high affinity sites. 125I-CaM bound in solution to a class of binding proteins (KD approximately 55 nM, 7.3 pmol per mg of ghost protein) which were extracted from ghosts by low ionic strength incubation. Soluble binding proteins were covalently cross-linked to 125I-CaM with Lomant's reagent, and 2 bands of 8,000 and 40,000 Mr (Mr of CaM subtracted) and spectrin dimer were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. The 8,000 and 40,000 Mr proteins represent a previously unrecognized class of CaM-binding sites which may mediate unexplained Ca2+-induced effects in the erythrocyte.  相似文献   

16.
A group of proteins that bind to the chromaffin granule membrane in the presence of Ca2+ has been isolated by affinity chromatography of bovine adrenal medullary cytosol on granule membranes coupled to Sepharose 4B. Twenty-two of these proteins were resolved into classes depending upon the Ca2+ concentration at which they were eluted from the affinity column (40 or 0.1 microM), upon their affinities for native granule membranes or for liposomes prepared from extracted granule lipids, and upon the requirement of seven of the proteins for ATP in the cytosol fraction and column buffers to promote binding. The molecular weights and isoelectric points of these proteins were determined by two-dimensional electrophoresis. Two of the granule-binding proteins were identified: synexin and calmodulin. Calmodulin was found to bind to seven specific granule membrane proteins after diffusion of 125I-labeled calmodulin into an acrylamide gel of membrane proteins separated by electrophoresis in the presence of sodium dodecyl sulfate. A phospholipid-activated protein kinase activity, possibly due to protein kinase C, was present in the granule-binding fraction. Two major granule-binding proteins were found to present a pattern in two-dimensional electrophoresis that was very similar to but shifted slightly toward the basic end of the gel from the pattern generated by light chains associated with clathrin in adrenal medullary coated vesicles. In the chromaffin cell, these proteins, by associating with the granule membrane in the presence of an increased cytosolic Ca2+ concentration, might play a variety of roles in the process of exocytosis.  相似文献   

17.
The receptor sites for 1,4-dihydropyridine (DHP) calcium channel ligands were identified and pharmacologically characterized in partially purified canine coronary artery smooth muscle (CSM) membranes (purification factor for 1,4-DHPs 2.8 and 2.2 respectively) using Ca2+ channel agonist (-)-S-[3H]BAYK 8644 and antagonist (+)-[3H]PN 200-110 as radioligands. The beta-adrenergic receptors were identified with (-)-3-[125I]iodocyanopindolol (ICYP). Specific binding of 1,4-DHPs and ICYP to membrane fraction was saturable, reversible and of both high and low affinity. The Kd for 1,4-DHP Ca2+ channel agonist was 0.59 +/- 0.05 and for antagonist 0.35 +/- 0.06 nmol/l and for low affinity binding sites Kd = 9.0 +/- 0.18 and 18.0 +/- 1.1 nmol/l. The high affinity 1,4-DHP binding (Bmax = 265 +/- 21 and 492 +/- 12 fmol/mg protein), showed stereoselectivity, temperature-dependence as well as pharmacological specificity: isoprenaline- and GTP-sensitivity, positive modulation with dilthiazem and negative modulation with verapamil, that is, properties characteristic of 1,4-DHP receptor sites on L-type Ca2+ channels. The low affinity binding sites were characterized as nonselective, temperature independent, dipyridamol-sensitive and represented a nucleoside transporter. The proportion of high affinity binding sites identified in the CSM membranes was 1.85 : 1.0 in favour of the antagonist. Results obtained with [125I]omega Conotoxin GVI A demonstrated that CSM membrane fractions isolated from median layers of coronary artery were devoid of substantial contamination with fragments of neuronal cells.  相似文献   

18.
Crystal structures of annexin V have shown up to 10 bound calcium ions in three different types of binding sites, but previous work concluded that only one of these sites accounted for nearly all of the membrane binding affinity of the molecule. In this study we mutated residues contributing to potential calcium binding sites in the AB and B helices in each of the four domains (eight sites in total) and in DE helices in the first, second, and third domains (three sites in total). We measured the affinity of each protein for phospholipid vesicles and cell membranes by quantitative calcium titration under low occupancy conditions (< 1% saturation of available membrane binding sites). Affinity was calculated from the midpoint and slope of the calcium titration curve and the concentration of membrane binding sites. The results showed that all four AB sites were essential for high affinity binding, as were three of the four B sites (in domains 1, 2, and 3); the DE site in the first domain made a slight contribution to affinity. Multisite mutants showed that each domain contributed additively and independently to binding affinity; in contrast, AB and B sites within the same domain were interdependent. The number of functionally important sites identified was consistent with the Hill coefficient observed in calcium titrations. This study shows an essential and previously unappreciated role for B-helix calcium binding sites in the membrane binding of annexins and indicates that all four domains of the molecule are required for maximum membrane binding affinity.  相似文献   

19.
The binding of 125I-cholecystokinin-33 (125I-CCK-33) to its receptors on rat pancreatic membranes was decreased by modification of membrane protein sulfhydryl groups. Sulfhydryl modifying reagents also caused an accelerated release of bound 125I-CCK-33 from its receptor. Because of the presence of an essential sulfhydryl group(s) in CCK receptor binding we studied the application of the heterobifunctional (SH,NH2) cross-linker, m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS), to affinity label 125I-CCK-33 binding proteins on rat pancreatic plasma membranes. Analysis of the cross-linked products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed that this heterobifunctional cross-linker affinity labeled a major Mr = 80,000-95,000 protein previously identified as part of the CCK receptor on the basis of affinity labeling using homobifunctional and heterobifunctional photoreactive cross-linkers. Additional proteins of Mr greater than 200,000, and Mr = 130,000-140,000 were affinity labeled using MBS. The efficiency of the cross-linking reaction between 125I-CCK-33 and its membrane binding proteins with MBS was significantly greater than that obtained with NH2-directed homobifunctional reagents such as disuccinimidyl suberate. The efficiency of cross-linking could be dramatically improved by reduction of membrane proteins with low-molecular weight thiols prior to binding and cross-linking. The differential labeling patterns of the CCK binding proteins obtained with chemical cross-linkers of similar length but different chemical reactivity underscores the need for caution in predicting native receptor structure from affinity labeling data alone. Using the same pancreatic plasma membrane preparation and 125I-insulin, the Mr = 125,000 alpha-subunit of the insulin receptor was affinity labeled using MBS as cross-linker, demonstrating its utility in identifying other peptide hormone receptors.  相似文献   

20.
Murine NK cells express the Ly-49 family of class I MHC-binding receptors that control their ability to lyse tumor or virally infected host target cells. X-ray crystallography studies have identified two predominant contact sites (sites 1 and 2) that are involved in the binding of the inhibitory receptor, Ly-49A, to H-2D(d). Ly-49G2 (inhibitory) and Ly-49D (activating) are highly homologous to Ly-49A and also recognize H-2D(d). However, the binding of Ly-49D and G(2) to H-2D(d) is of lower affinity than Ly-49A. All Ly-49s contain N-glycosylation motifs; however, the importance of receptor glycosylation in Ly-49-class I interactions has not been determined. Ly-49D and G(2) contain a glycosylation motif (NTT (221-223)), absent in Ly-49A, adjacent to one of the proposed binding sites for H-2D(d) (site 2). The presence of a complex carbohydrate group at this critical site could interfere with class I binding. In this study, we are able to demonstrate for the first time that Ly-49D binds H-2D(d) in the presence of mouse beta(2)-microglobulin. We also demonstrate that glycosylation of the NTT (221-23) motif of Ly-49D inteferes with recognition of H-2D(d). Alteration of the Ly-49D-NTT (221-23) motif to abolish glycosylation at this site resulted in enhanced H-2D(d) binding and receptor activation. Furthermore, glycosylation of Ly-49G2 at NTT (221-23) also reduces receptor binding to H-2D(d) tetramers. Therefore, the addition of complex carbohydrates to the Ly-49 family of receptors may represent a mechanism by which NK cells regulate affinity for host class I ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号