首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Streptococcus mutans is considered one of the primary etiologic agents of dental caries. Previously, we characterized the VicRK two-component signal transduction system, which regulates multiple virulence factors of S. mutans. In this study, we focused on the vicX gene of the vicRKX tricistronic operon. To characterize vicX, we constructed a nonpolar deletion mutation in the vicX coding region in S. mutans UA159. The growth kinetics of the mutant (designated SmuvicX) showed that the doubling time was longer and that there was considerable sensitivity to paraquat-induced oxidative stress. Supplementing a culture of the wild-type UA159 strain with paraquat significantly increased the expression of vicX (P < 0.05, as determined by analysis of variance [ANOVA]), confirming the role of this gene in oxidative stress tolerance in S. mutans. Examination of mutant biofilms revealed architecturally altered cell clusters that were seemingly denser than the wild-type cell clusters. Interestingly, vicX-deficient cells grown in a glucose-supplemented medium exhibited significantly increased glucosyltransferase B/C (gtfB/C) expression compared with the expression in the wild type (P < 0.05, as determined by ANOVA). Moreover, a sucrose-dependent adhesion assay performed using an S. mutans GS5-derived vicX null mutant demonstrated that the adhesiveness of this mutant was enhanced compared with that of the parent strain and isogenic mutants of the parent strain lacking gtfB and/or gtfC. Also, disruption of vicX reduced the genetic transformability of the mutant approximately 10-fold compared with that of the parent strain (P < 0.05, as determined by ANOVA). Collectively, these findings provide insight into important phenotypes controlled by the vicX gene product that can impact S. mutans pathogenicity.  相似文献   

3.
Streptococcus pyogenes is a human pathogen that causes various diseases. Numerous virulence factors secreted by S. pyogenes are involved in pathogenesis. The peroxide regulator (PerR) is associated with the peroxide resistance response and pathogenesis, but little is known about the regulation of the secretome involved in virulence. To investigate how PerR regulates the expression of the S. pyogenes secretome involved in virulence, a perR deficient mutant was used for comparative secretomic analysis with a wild-type strain. The conditioned medium containing secreted proteins of a wild-type strain and a perR deficient mutant at the stationary phase were collected for two-dimensional gel electrophoresis analysis, where protease inhibitors were applied to avoid the degradation of extracellular proteins. Differentially expressed protein spots were identified by liquid chromatography electrospray ionization tandem MS. More than 330 protein spots were detected on each gel. We identified 25 unique up-regulated proteins and 13 unique down-regulated proteins that were directly or indirectly controlled by the PerR regulator. Among these identified proteins, mitogen factor 3 (MF3), was selected to verify virulence and the expression of gene products. The data showed that MF3 protein levels in conditioned medium, as measured by immunoblot analysis, correlated well with protein levels determined by two-dimensional gel electrophoresis analysis. We also demonstrated that PerR bound to the promoter region of the mf3 gene. The result of an infection model showed that virulence was attenuated in the mf3 deficient mutant. Additional growth data of the wild-type strain and the mf3 deficient mutant suggested that MF3 played a role in digestion of exogenous DNA for promoting growth. To summarize, we conclude that PerR can positively regulate the expression of the secreted protein MF3 that contributes to the virulence in S. pyogenes. The analysis of the PerR-regulated secretome provided key information for the elucidation of the host-pathogen interactions and might assist in the development of potential chemotherapeutic strategies to prevent or treat streptococcal diseases.  相似文献   

4.
The influence of slyA gene, originally found in Salmonella serovar Typhimurium as a regulatory gene for the expression of virulence genes, on a mouse virulence of S. serovar Choleraesuis was investigated by using an slyA-defective mutant. The defective mutant was constructed by the insertion of a kanamycin-resistance gene (aph) into the cloned slyA gene, and the homologous recombination with the intact slyA gene on the chromosome. The mutant strain showed the LD50 value for BALB/c mouse approximately 10(5) higher than that of the parent strain. The increase of the LD50 value was the same order as that shown by the mutation of the slyA gene of S. serovar Typhimurium, although LD50 of the wild-type strain of S. serovar Choleraesuis was 40-fold higher than that of S. serovar Typhimurium. The time course of infection observed in the mice organs also proved the clear difference of the virulence between the parent and the mutant strains. These results suggested that the slyA gene product functions as a virulence-associated regulator also in S. serovar Choleraesuis.  相似文献   

5.
Mutation of staphylococcal accessory regulator (sarA) results in increased production of extracellular proteases in Staphylococcus aureus, which has been correlated with decreased biofilm formation and decreased accumulation of extracellular toxins. We used murine models of implant‐associated biofilm infection and S. aureus bacteraemia (SAB) to compare virulence of USA300 strain LAC, its isogenic sarA mutant, and derivatives of each of these strains with mutations in all 10 of the genes encoding recognized extracellular proteases. The sarA mutant was attenuated in both models, and this was reversed by eliminating production of extracellular proteases. To examine the mechanistic basis, we identified proteins impacted by sarA in a protease‐dependent manner. We identified 253 proteins where accumulation was reduced in the sarA mutant compared with the parent strain, and was restored in the sarA/protease mutant. Additionally, in SAB, the LAC protease mutant exhibited a hypervirulent phenotype by comparison with the isogenic parent strain, demonstrating that sarA also positively regulates production of virulence factors, some of which are subject to protease‐mediated degradation. We propose a model in which attenuation of sarA mutants is defined by their inability to produce critical factors and simultaneously repress production of extracellular proteases that would otherwise limit accumulation of virulence factors.  相似文献   

6.
Salmonella typhimurium ST39 exhibits reduced virulence in mice and decreased survival in mouse macrophages compared with the parent strain SL3201. Strain ST39 is nonmotile, carries an indeterminate deletion in and near the flgB operon, and is defective in the mviS (mouse virulence Salmonella) locus. In flagellum-defective strains, the flgM gene product of S. typhimurium negatively regulates flagellar genes by inhibiting the activity of FliA, the flagellin-specific sigma factor. In this study, flgM of wild-type S. typhimurium LT2 was found to complement the mviS defect in ST39 for virulence in mice and for enhanced survival in macrophages. Transduction of flgM::Tn10dCm into the parent strain SL3201 resulted in attenuation of mouse virulence and decreased survival in macrophages. However, a flgM-fliA double mutant was fully virulent in mice and survived in macrophages at wild-type levels. Thus, the absolute level of FliA activity appears to affect the virulence of S. typhimurium SL3201 in mice. DNA hybridization studies showed that flgM-related sequences were present in species other than Salmonella typhimurium and that sequences related to that of fliA were common among members of the family Enterobacteriaceae. Our results demonstrate that flgM and fliA, two genes previously shown to regulate flagellar operons, are also involved in the regulation of expression of virulence of S. typhimurium and that this system may not be unique to the genus Salmonella.  相似文献   

7.
8.
9.
10.
Previous studies have indicated that the silkworm model is useful for identifying virulence genes of Staphylococcus aureus, a human pathogenic bacterium. Here we examined the scope of S.?aureus virulence factors that can be evaluated using the silkworm model. Gene-disrupted mutants of the agr locus, arlS gene and saeS gene, which regulate the expression of cell surface adhesins and hemolysins, exhibited attenuated virulence in silkworms. Mutants of the hla gene encoding α-hemolysin, the hlb gene encoding β-hemolysin, and the psmα and psmβ operons encoding cytolysins, however, showed virulence in silkworms indistinguishable from that of the parent strain. Thus, these S.?aureus cytolysins are not required for virulence in silkworms. In contrast, the gene-disrupted mutants of clfB, fnbB and sdrC, which encode cell-wall-anchored proteins, attenuated S.?aureus virulence in silkworms. In addition, the mutant of the srtA gene encoding sortase A, which anchors cell-wall proteins, showed attenuated virulence in silkworms. These findings suggest that the silkworm model can be used to evaluate S.?aureus cell-wall proteins and regulatory proteins as virulence factors.  相似文献   

11.
Virulent strains of the facultative intracellular bacterium Rhodococcus equi isolated from young horses (foals) with R. equi pneumonia, carry an 80-90 kb virulence plasmid and express a highly immunogenic 15-17 kDa protein of unknown function called VapA (Virulence Associated Protein A). Recent sequencing of the virulence plasmid identified a putative pathogenicity island encoding a novel family of seven Vap proteins including VapA. These proteins exhibit a significant sequence similarity to each other but have no homologues in other organisms. In this study, we describe the construction of an R. equi mutant lacking a 7.9 kb DNA region spanning five vap genes (vapA, -C, -D, -E and -F ). This vap locus mutant was attenuated for virulence in mice as it was unable to replicate in vivo and was rapidly cleared in comparison to the virulent wild-type strain. Complementation analysis of the vap locus mutant showed that expression of vapA alone could restore full virulence, whereas expression of vapC, -D and -E could not. We subsequently constructed an R. equi strain lacking only the vapA gene and found that it was attenuated for growth in vivo to the same degree as the vap locus mutant. Unlike wild-type R. equi which replicates intracellularly, both of the mutant strains exhibited a growth defect in macrophages although their attachment to the macrophages was unaffected. These studies provide the first proof of a role for vapA in the virulence of R. equi, and demonstrate that its presence is essential for intracellular growth in macrophages.  相似文献   

12.
13.
A spontaneous high hydrostatic pressure (HHP)-tolerant mutant of Listeria monocytogenes ScottA, named AK01, was isolated previously. This mutant was immotile and showed increased resistance to heat, acid and H2O2 compared with the wild type (wt) (Karatzas, K.A.G. and Bennik, M.H.J. 2002 Appl Environ Microbiol 68: 3183-3189). In this study, we conclusively linked the increased HHP and stress tolerance of strain AK01 to a single codon deletion in ctsR (class three stress gene repressor) in a region encoding a highly conserved glycine repeat. CtsR negatively regulates the expression of the clp genes, including clpP, clpE and the clpC operon (encompassing ctsR itself), which belong to the class III heat shock genes. Allelic replacement of the ctsR gene in the wt background with the mutant ctsR gene, designated ctsRDeltaGly, rendered mutants with phenotypes and protein expression profiles identical to those of strain AK01. The expression levels of CtsR, ClpC and ClpP proteins were significantly higher in ctsRDeltaGly mutants than in the wt strain, indicative of the CtsRDeltaGly protein being inactive. Further evidence that the CtsRDeltaGly protein lacks its repressor function came from the finding that the Clp proteins in the mutant were not further induced upon heat shock, and that HHP tolerance of a ctsR deletion strain was as high as that of a ctsRDeltaGly mutant. The high HHP tolerance possibly results from the increased expression of the clp genes in the absence of (active) CtsR repressor. Importantly, the strains expressing CtsRDeltaGly show significantly attenuated virulence compared with the wt strain; however, no indication of disregulation of PrfA in the mutant strains was found. Our data highlight an important regulatory role of the glycine-rich region of CtsR in stress resistance and virulence.  相似文献   

14.
The fish pathogen Streptococcus iniae cannot be identified by most commercial bacterial identification systems. The results presented here indicate that over 70% of our S. iniae isolates have been identified using the Biolog(R) GP microplate panels and Microlog(R) database. The isolates were confirmed as S. iniae by specific PCR methods and have been found to conform to the result obtained with the type strain S. iniae ATCC 29178.  相似文献   

15.
16.
Surface capsular polysaccharides play a critical role in protecting several pathogenic microbes against innate host defenses during infection. Little is known about virulence mechanisms of the fish pathogen Streptococcus iniae, though indirect evidence suggests that capsule could represent an important factor. The putative S. iniae capsule operon contains a homologue of the cpsD gene, which is required for capsule polymerization and export in group B Streptococcus and Streptococcus pneumoniae. To elucidate the role of capsule in the S. iniae infectious process, we deleted cpsD from the genomes of two virulent S. iniae strains by allelic exchange mutagenesis to generate the isogenic capsule-deficient DeltacpsD strains. Compared to wild-type S. iniae, the DeltacpsD mutants had a predicted reduction in buoyancy and cell surface negative charge. Transmission electron microscopy confirmed a decrease in the abundance of extracellular capsular polysaccharide. Gas-liquid chromatography-mass spectrometry analysis of the S. iniae extracellular polysaccharides showed the presence of l-fucose, d-mannose, d-galactose, d-glucose, d-glucuronic acid, N-acetyl-d-galactosamine, and N-acetyl-d-glucosamine, and all except mannose were reduced in concentration in the isogenic mutant. The DeltacpsD mutants were highly attenuated in vivo in a hybrid striped bass infection challenge despite being more adherent and invasive to fish epithelial cells and more resistant to cationic antimicrobial peptides than wild-type S. iniae. Increased susceptibility of the S. iniae DeltacpsD mutants to phagocytic killing in whole fish blood and by a fish macrophage cell line confirmed the role of capsule in virulence and highlighted its antiphagocytic function. In summary, we report a genetically defined study on the role of capsule in S. iniae virulence and provide preliminary analysis of S. iniae capsular polysaccharide sugar components.  相似文献   

17.
18.
A yeast two-hybrid screen searching for chromosomally encoded proteins that interact with the Agrobacterium tumefaciens VirB8 protein was carried out. This screen identified an interaction candidate homologous to the partial sequence of a gene that had previously been identified in a transposon screen as a potential regulator of virG expression, chvD. In this report, the cloning of the entire chvD gene is described and the gene is sequenced and characterized. Insertion of a promoterless lacZ gene into the chvD locus greatly attenuated virulence and vir gene expression. Compared to that of the wild-type strain, growth of the chvD mutant was reduced in rich, but not minimal, medium. Expression of chvD, as monitored by expression of beta-galactosidase activity from the chvD-lacZ fusion, occurred in both rich and minimal media as well as under conditions that induce virulence gene expression. The ChvD protein is highly homologous to a family of ATP-binding cassette transporters involved in antibiotic export from bacteria and has two complete Walker box motifs. Molecular genetic analysis demonstrated that disruption of either Walker A box, singly, does not inactivate this protein's effect on virulence but that mutations in both Walker A boxes renders it incapable of complementing a chvD mutant strain. Constitutive expression of virG in the chvD mutant strain restored virulence, supporting the hypothesis that ChvD controls virulence through effects on virG expression.  相似文献   

19.
20.
Brucella species are important zoonotic pathogens affecting a wide variety of mammals. Therefore, the identification of new Brucella virulence factors is of great interest in understanding bacterial pathogenesis and immune evasion. In this study, we have identified Brucella abortus vacB gene that presents 2343 nucleotides and 781 amino acids and it shows 39% identity with Shigella flexneri vacB gene that encodes an exoribonuclease RNase R involved in bacterial virulence. Further, we have inactivated Brucella vacB by gene replacement strategy generating a deletion mutant strain. In order to test the role of Brucella vacB in pathogenesis, BALB/c and interferon regulatory factor-1 (IRF-1) knockout (KO) mice received Brucella vacB mutant, the virulent parental strain 2308 or the vaccine strain RB51 and the bacterial CFU numbers in spleens and mous survival were monitored. Our results demonstrated that the B. abortus DeltavacB mutant and the wild type strain 2308 showed similar CFU numbers in BALB/c mice. Additionally, IRF-1 KO mice that received either the vacB mutant or S2308 strain died in 12-14 days postinfection; in contrast, all animals that received the RB51 vaccine strain survived for 30 days postinoculation. In summary, this study reports that the vacB gene in B. abortus has no impact on bacterial pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号