首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BNip3 is a member of Bcl-2 family proteins that displays proapoptotic activity. It contains Bcl-2 homology (BH) 3 and single carboxy terminal membrane-anchoring domain (TM), which targets to specific intracellular organelles, especially to mitochondria. Mitochondria play significant roles in apoptosis by releasing apoptogenic factors through large conductance channel known as permeability transition pore (PTP). Although BNip3 associates with mitochondria when overexpressed, apoptotic pathways including mitochondrial cascade and functional domains of BNip3 are still unknown. In this report, we demonstrate that recombinant BNip3 (rBNip3) induces mitochondrial permeability transition (MPT) and cytochrome c release from isolated mitochondria, which are inhibited by the PT inhibitor cyclosporin A (CsA). We further show that carboxy terminal tail of BNip3, but not BH3, is essential for the induction of PT and cytochrome c release on the base of mutational analysis. Moreover, addition of carboxy terminal c-tail to TM substitution mutant, which did not induce the PT and cytochrome c release, restored PT-inducing activity. Taken together, our results suggest that BNip3 exerts proapoptotic activity through PT induction and that carboxy terminal c-tail is crucial for it.  相似文献   

2.
In this report, we conducted a comprehensive survey of Bcl-2 family members, a divergent group of proteins that regulate programmed cell death by an evolutionarily conserved mechanism. Using comparative sequence analysis, we found novel sequences in mammals, nonmammalian vertebrates, and in a number of invertebrates. We then asked what conclusions could be drawn from phyletic distribution, intron/exon structures, sequence/structure relationships, and phylogenetic analyses within the updated Bcl-2 family. First, multidomain members having a sequence pattern consistent with the conservation of the Bcl-X(L)/Bax/Bid topology appear to be restricted to multicellular animals and may share a common ancestry. Next, BNip proteins, which were originally identified based on their ability to bind to E1B 19K/Bcl-2 proteins, form three independent monophyletic branches with different evolutionary history. Lastly, a set of Bcl-2 homology 3-only proteins with unrelated secondary structures seems to have evolved after the origin of Metazoa and exhibits diverse expansion after speciation during vertebrate evolution.  相似文献   

3.
BNip3 is a prominent representative of apoptotic Bcl-2 proteins with rather unique properties initiating an atypical programmed cell death pathway resembling both necrosis and apoptosis. Many Bcl-2 family proteins modulate the permeability state of the outer mitochondrial membrane by forming homo- and hetero-oligomers. The structure and dynamics of the homodimeric transmembrane domain of BNip3 were investigated with the aid of solution NMR in lipid bicelles and molecular dynamics energy relaxation in an explicit lipid bilayer. The right-handed parallel helix-helix structure of the domain with a hydrogen bond-rich His-Ser node in the middle of the membrane, accessibility of the node for water, and continuous hydrophilic track across the membrane suggest that the domain can provide an ion-conducting pathway through the membrane. Incorporation of the BNip3 transmembrane domain into an artificial lipid bilayer resulted in pH-dependent conductivity increase. A possible biological implication of the findings in relation to triggering necrosis-like cell death by BNip3 is discussed.  相似文献   

4.
Mitochondria form reticular networks comprised of filamentous tubules and continuously move and change shape. Bcl-2 family proteins actively participate in the regulation of mitochondria fragmentation. Here, we show that human Noxa, which belongs to the BH3-only pro-apoptotic Bcl-2 family, causes mitochondrial fragmentation. We found that while the Bcl-2 homology 3 (BH3) domain of Noxa is not associated with mitochondrial fragmentation, the mitochondrial targeting domain (MTD) of Noxa is the region responsible for inducing fragmentation. Two leucine residues in MTD play a key role in the process. Furthermore, the lack of Noxa causes a significant reduction of Velcade-induced mitochondrial fragmentation. Together, these results provide novel insight into the role of Noxa in mitochondrial dynamics and cell death.  相似文献   

5.
细胞凋亡在神经细胞的生理性和病理性死亡中起着重要作用。唯BH3域蛋白是Bcl-2家族中的一类仅含有BH3同源结构域的促凋亡分子,它们通过抑制Bcl-2抗凋亡成员的活性或激活Bax/Bak样促凋亡成员的活性来调节细胞凋亡。最近研究表明,唯BH3域蛋白在凋亡的启动及凋亡通路的沟通中发挥着极其重要的作用。  相似文献   

6.
7.
Role of Bcl-2 family members in immunity and disease   总被引:4,自引:0,他引:4  
The different members of the Bcl-2 family are essential regulators of programmed cell death. These different members share one or more Bcl-2 homology domains, required for their ability to regulate each other. In this review, we describe current knowledge of the functions of different Bcl-2 members and their potential roles in disease and immunity.  相似文献   

8.
Ouyang YB  Giffard RG 《Cell calcium》2004,36(3-4):303-311
Mitochondria are central to brain cell response to ischemia, with critical roles in generation of ATP, production of free radicals, and regulation of apoptotic cell death. Changes in the permeability of the outer mitochondrial membrane to regulators of apoptosis can control ischemic cell death and this permeability is directly controlled by the Bcl-2 family of proteins. The Bcl-2 family regulate apoptosis by several mechanisms including affecting the formation of apoptotic protein-conducting pores in the outer mitochondrial membrane. The anti-apoptotic protein Bcl-2 improves neuron survival following various insults, and is protective even when administered after stroke onset in a rat model of focal ischemia. Despite intense study, the precise molecular mechanisms underlying protection by the anti-apoptotic members of the Bcl-2 family are not completely understood. This review focuses on the mechanisms by which Bcl-2 family members control the permeability of the mitochondrial membrane and influence other aspects of mitochondrial function after brain ischemia, concluding with discussion of the potential use of Bcl-2 for the treatment of cerebral ischemia.  相似文献   

9.
细胞凋亡,即细胞程序性死亡,在多细胞生物的发育和稳态调控过程中发挥关键作用.Bcl-2家族蛋白是凋亡过程中的主要调控因子,关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点.已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡,并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互...  相似文献   

10.
Bcl-2-family proteins are central regulators of cell life and death. At least three major classes of Bcl-2-family proteins have been delineated, including proapoptotic proteins that contain several conserved regions of sequence similarity (termed 'multidomain'). In mammals, the multidomain proteins (MDPs) of the Bcl-2 family include Bax, Bak, and Bok. The founding member of the MDP group of Bcl-2-family proteins was discovered by Stanley Korsmeyer and co-workers, initiating an exciting area of cell death research. The status of current knowledge about the mechanisms and functions of MDPs is reviewed here, and some areas for future research are outlined. Therapeutic opportunities emerging from a growing understanding of MDPs with respect to their three-dimensional structures, biochemical actions, and roles in disease raise hopes that the foundation of basic research laid by Korsmeyer and others will eventually be translated into clinical benefits, leaving a legacy that benefits the world for many decades.  相似文献   

11.
Background: The Bcl-2 family of proteins plays a key role in the regulation of apoptosis. Some family members prevent apoptosis induced by a variety of stimuli, whereas others promote apoptosis. Competitive dimerisation between family members is thought to regulate their function. Homologous domains within individual proteins are necessary for interactions with other family members and for activity, although the specific mechanisms might differ between the pro-apoptotic and anti-apoptotic proteins.Results: Using a cell-free system based on extracts of Xenopus eggs, we have investigated the role of the Bcl-2 homology domain 3 (BH3) from different members of the Bcl-2 family. BH3 domains from the pro-apoptotic proteins Bax and Bak, but not the BH3 domain of the anti-apoptotic protein Bcl-2, induced apoptosis in this system, as determined by the rapid activation of specific apoptotic proteases (caspases) and by DNA fragmentation. The apoptosis-inducing activity of the BH3 domains requires both membrane and cytosolic fractions of cytoplasm, involves the release of cytochrome c from mitochondria and is antagonistic to Bcl-2 function. Short peptides, corresponding to the minimal sequence of BH3 domains required to bind anti-apoptotic Bcl-2 family proteins, also trigger apoptosis in this system.Conclusions: The BH3 domains of pro-apoptotic proteins are sufficient to trigger cytochrome c release, caspase activation and apoptosis. These results support a model in which pro-apoptotic proteins, such as Bax and Bak, bind to Bcl-2 via their BH3 domains, inactivating the normal ability of Bcl-2 to suppress apoptosis. The ability of synthetic peptides to reproduce the effect of pro-apoptotic BH3 domains suggests that such peptides may provide the basis for engineering reagents to control the initiation of apoptosis.  相似文献   

12.
Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.  相似文献   

13.
The roles of Bid   总被引:16,自引:0,他引:16  
Bid is an abundant pro-apoptotic protein of the Bcl-2 family that is crucial for death receptor-mediated apoptosis in many cell systems. Bid action has been proposed to involve the mitochondrial re-location of its truncated form, tBid, to facilitate the release of apoptogenic proteins like cytochrome c. However, the precise mechanism of (t)Bid action is unknown. To advance our knowledge, this review evaluates the basic steps of Bid activation—caspase cleavage, dissociation of tBid, and lipid-mediated mitochondrial relocation—and their structure-function aspects. Relevant current information is thoroughly examined to outline the problems that hamper our understanding of the possible roles of Bid in cell life and death, and suggest valuable directions for obtaining a clarification of its pro-apoptotic mechanism.  相似文献   

14.
Huntington''s disease (HD) is a neurodegenerative disorder characterized by progressive neuronal death in the basal ganglia and cortex. Although increasing evidence supports a pivotal role of mitochondrial dysfunction in the death of patients'' neurons, the molecular bases for mitochondrial impairment have not been elucidated. We provide the first evidence of an abnormal activation of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNip3) in cells expressing mutant Huntingtin. In this study, we show an abnormal accumulation and dimerization of BNip3 in the mitochondria extracted from human HD muscle cells, HD model cell cultures and brain tissues from HD model mice. Importantly, we have shown that blocking BNip3 expression and dimerization restores normal mitochondrial potential in human HD muscle cells. Our data shed light on the molecular mechanisms underlying mitochondrial dysfunction in HD and point to BNip3 as a new potential target for neuroprotective therapy in HD.  相似文献   

15.
Mitochondria play key roles in apoptosis, a central step being the release of cytochromec (cyt c) across the outer mitochondrial membrane into the cytoplasm. We review this process in terms of the influences that induce mitochondria to release cyt c, the possible mechanisms of such release and the downstream consequences for caspase activation. The contributions of members of the Bcl-2 family in regulating mitochondrial activities relevant to apoptotic signaling are considered. Antiapoptotic members, such as Bcl-2 itself, are antagonistic to other family members, which prominently include Bax amongst a host of other proapoptotic proteins homologous to Bcl-2. Focus is placed on technical methods of determining cyt c release, which encompass cell fractionation, biochemistry, immunochemistry and confocal microscopy [including observations of release in real time using cyt c-green fluorescent protein (GFP) fusion proteins]. The advantages and potential pitfalls of the various approaches are discussed, with some emphasis on the use of cyt c-GFP fusions and the determination of the characteristics of the putative outer membrane pore through which cyt c and other mitochondrial proteins with proapoptotic functions may pass. The richness of this field relating to mitochondria and cell death is brought out by consideration of studies carried out in mammalian and yeast cells.  相似文献   

16.
17.
《Autophagy》2013,9(10):1098-1107
The GABARAPL1 (GABARAP-LIKE 1) gene was first described as an early estrogen-regulated gene that shares a high sequence homology with GABARAP and is thus a part of the GABARAP family. GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. The GABARAP family members (GABARAP, GABARAPL1 and GABARAPL2) and their close homologs (LC3 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression. However, despite these similarities, GABARAPL1 displays a complex regulation that is different from that of other GABARAP family members. Moreover, it presents a regulated tissue expression and is the most highly expressed gene among the family in the central nervous system. In this review article, we will outline the specific functions of this protein and also hypothesize about the roles that GABARAPL1 might have in several important biological processes such as cancer or neurodegenerative diseases.  相似文献   

18.
Bcl-2-protein family members are essential regulators of apoptosis. Anti-apoptotic Bcl-2 proteins ensure cell survival via different mechanisms, including via binding of pro-apoptotic Bcl-2-family members and the modulation of intracellular Ca2+-transport systems. Many cancer cells upregulate these proteins to overcome the consequences of ongoing oncogenic stress. Bcl-2 inhibition leading to cell death, therefore emerged as a novel cancer therapy. Different Bcl-2 inhibitors have already been developed including the hydrophobic cleft-targeting BH3 mimetics, which antagonize Bcl-2’s ability to scaffold and neutralize pro-apoptotic Bcl-2-family members. As such, the BH3 mimetics have progressed into clinical studies as precision medicines. Furthermore, new inhibitors that target Bcl-2’s BH4 domain have been developed as promising anti-cancer tools. Given Bcl-2’s role in Ca2+ signaling, these drugs and tools can impact Ca2+ signaling. In addition to this, some Bcl-2 inhibitors may have “off-target” effects that cause Ca2+-signaling dysregulation not only in cancer cells but also in healthy cells, resulting in adverse effects. In this review, we aim to provide an up-to-date overview of the involvement of intracellular Ca2+ signaling in the working mechanism and “off-target” effects of the different Bcl-2-antagonizing small molecules and peptides.  相似文献   

19.
One group of Bcl-2 protein family, which shares only the BH3 domain (BH3-only), is critically involved in the regulation of programmed cell death. Herein we demonstrated a novel human BH3-only protein (designated as Bop) which could induce apoptosis in a BH3 domain-dependent manner. Further analysis indicated that Bop mainly localized to mitochondria and used its BH3 domain to contact the loop regions of voltage dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane. In addition, purified Bop protein induced the loss of mitochondrial transmembrane potential (ΔΨm) and the release of cytochrome c. Furthermore, Bop used its BH3 domain to contact pro-survival Bcl-2 family members (Bcl-2, Bcl-XL, Mcl-1, A1 and Bcl-w), which could inhibit Bop-induced apoptosis. Bop would be constrained by pro-survival Bcl-2 proteins in resting cells, because Bop became released from phosphorylated Bcl-2 induced by microtubule-interfering agent like vincristine (VCR). Indeed, knockdown experiments indicated that Bop was partially required for VCR induced cell death. Finally, Bop might need to function through Bak and Bax, likely by releasing Bak from Bcl-XL sequestration. In conclusion, Bop may be a novel BH3-only factor that can engage with the regulatory network of Bcl-2 family members to process intrinsic apoptotic signaling.  相似文献   

20.
Apoptosis proceeds through a set of evolutionarily conserved processes that co-ordinate the elimination of damaged or unneeded cells. This program of cell death is carried out by organelle-directed regulators, including the Bcl-2 proteins, and ultimately executed by proteases of the caspase family. Although the biochemical mechanisms of apoptosis are increasingly understood, the underlying cell biology orchestrating programmed cell death remains enigmatic. In this review, we summarize the current understanding of Bcl-2 protein regulation and caspase activation while examining cell biological mechanisms and consequences of apoptotic induction. Organellar contributions to apoptotic induction include death receptor endocytosis, mitochondrial and lysosomal permeabilization, endoplasmic reticulum calcium release and fragmentation of the Golgi apparatus. These early apoptotic events are accompanied by stabilization of the microtubule cytoskeleton and translocation of organelles to the microtubule organizing center. Together, these phenomena establish a model of apoptotic induction whereby a cytoskeletal-dependent coalescence and 'scrambling' of organelles in the paranuclear region co-ordinates apoptotic communication, caspase activation and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号