首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperoxaluria‐induced calcium oxalate (CaOx) deposition is the key factor in kidney stone formation, for which adipose‐derived stromal cells (ADSCs) have been used as a therapeutic treatment. Studies revealed that miR‐20b‐3p is down‐regulated in hypercalciuric stone‐forming rat kidney. To investigate whether ADSC‐derived miR‐20b‐3p‐enriched exosomes protect against kidney stones, an ethylene glycol (EG)‐induced hyperoxaluria rat model and an in vitro model of oxalate‐induced NRK‐52E cells were established to explore the protective mechanism of miR‐20b‐3p. The results showed that miR‐20b‐3p levels were decreased following hyperoxaluria in the urine of patients and in kidney tissues from animal models. Furthermore, treatment with miR‐20b‐3p‐enriched exosomes from ADSCs protected EG‐induced hyperoxaluria rats, and cell experiments confirmed that co‐culture with miR‐20b‐3p‐enriched exosomes alleviated oxalate‐induced cell autophagy and the inflammatory response by inhibiting ATG7 and TLR4. In conclusion, ADSC‐derived miR‐20b‐3p‐enriched exosomes protected against kidney stones by suppressing autophagy and inflammatory responses.  相似文献   

2.
Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate, using phytotherapy is being sought. Dolichos biflorus seeds, which are used as dietary food in India, possess antilithiatic properties. In the present study, a novel dimeric antilithiatic protein (98 kDa) from its seeds was purified based on its ability to inhibit calcium oxalate crystallization in vitro. Amino acid analysis of Dolichos biflorus antilithiatic protein showed abundant acidic amino acids. The mascot search engine presented sequence similarity with a calcium binding protein, calnexin of Pisum sativum from the m/z data obtained by MALDI TOF mass spectrometer. Above results demonstrate the anticalcifying/antilithiatic nature of a novel protein from the seeds of Dolichos biflorus and thus open new vistas for using plant proteins as therapeutic agents to treat urolithiasis.  相似文献   

3.
Numb was originally discovered as an intrinsic cell fate determinant in Drosophila by antagonizing Notch signaling. The present study is to characterize the role of Numb in oxidative stress-induced apoptosis of renal proximal tubular cells. Exposure of NRK52E cells to puromycin aminonucleoside (PA) resulted in caspase 3-dependent apoptosis. Numb expression was downregulated by PA in a time- and dose-dependent manner. Knocking down endogenous Numb by siRNA sensitized NRK52E cells to PA-induced apoptosis, whereas overexpressing Numb protected NRK52E cells from PA-induced apoptosis. Moreover, PA activated Notch signaling in a time- and dose-dependent manner as indicated by increased expression of the intracellular domain of Notch and Hes-1. Notch signaling inhibitor DAPT significantly attenuated Numb siRNA-augmented apoptosis. On the other hand, overexpression of intracellular domain of Notch1 could reverse the protective effect of Numb on PA-induced apoptosis. Taken together, our data demonstrated that, in renal proximal tubular cells, Numb functions as a protective molecule on PA-induced apoptosis through antagonizing Notch signaling activity.  相似文献   

4.

Background

The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal–membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure.

Methods

Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin–Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated.

Results

Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level.

Conclusions

We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these proteins having potential to modulate calcium oxalate crystallization will throw light on understanding and controlling urolithiasis in humans.  相似文献   

5.
Urinary glycoproteins are important inhibitors of calcium oxalate crystallization and adhesion of crystals to renal cells, both of which are key mechanisms in kidney stone formation. This has been attributed to glycosylation of the proteins. In South Africa, the black population rarely form stones (incidence < 1%) compared with the white population (incidence 12-15%). A previous study involving urinary prothrombin fragment 1 from both populations demonstrated superior inhibitory activity associated with the protein from the black group. In the present study, we compared N-linked and O-linked oligosaccharides released from urinary prothrombin fragment 1 isolated from the urine of healthy and stone-forming subjects in both populations to elucidate the relationship between glycosylation and calcium oxalate stone pathogenesis. The O-glycans of both control groups and the N-glycans of the black control samples were significantly more sialylated than those of the white stone-formers. This demonstrates a possible association between low-percentage sialylation and kidney stone disease and provides a potential diagnostic method for a predisposition to kidney stones that could lead to the implementation of a preventative regimen. These results indicate that sialylated glycoforms of urinary prothrombin fragment 1 afford protection against calcium oxalate stone formation, possibly by coating the surface of calcium oxalate crystals. This provides a rationale for the established roles of urinary prothrombin fragment 1, namely reducing the potential for crystal aggregation and inhibiting crystal-cell adhesion by masking the interaction of the calcium ions on the crystal surface with the renal cell surface along the nephron.  相似文献   

6.
Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.  相似文献   

7.
8.
The level of methylation of CpG has been determined in satellite DNA I and in an 1180-base-pair fragment of L1Rn DNA sequences extracted from rat kidney tissue and from two rat kidney cell lines, NRK B77 and NRK 52E. This determination was performed by HPLC analysis of 3'-deoxyribonucleoside monophosphates obtained after digestion of DNA labelled in vitro with [alpha-32P]dGTP using DNA polymerase I. Results obtained show that L1 sequences are hypomethylated in rat cell lines (29.3% in NRK B77 and 18.6% in NRK 52E) when compared to the same fragment extracted from rat kidney tissue (47.6%). However, satellite DNA I in the cell lines is much less affected by the hypomethylation. Satellite DNA I purified from NRK B77 and NRK 52E contains 58.8% and 47.8% respectively of methylated CpG whereas it contains 62% of methylated CpG in rat kidney tissue. Therefore, the demethylation of CpG seems not to occur at random in these cell lines.  相似文献   

9.
Kidney stones are a common problem for which inadequate prevention exists. We recruited ten recurrent kidney stone formers with documented calcium oxalate stones into a two phased study to assess safety and effectiveness of Cystone®, an herbal treatment for prevention of kidney stones. The first phase was a randomized double-blinded 12 week cross over study assessing the effect of Cystone® vs. placebo on urinary supersaturation. The second phase was an open label one year study of Cystone® to determine if renal stone burden decreased, as assessed by quantitative and subjective assessment of CT. Results revealed no statistically significant effect of Cystone® on urinary composition short (6 weeks) or long (52 weeks) term. Average renal stone burden increased rather than decreased on Cystone®. Therefore, this study does not support the efficacy of Cystone® to treat calcium oxalate stone formers. Future studies will be needed to assess effects on stone passage, or on other stone types.  相似文献   

10.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that is a notable biomarker of kidney injury. However, it is not clear how LPA is produced in renal cells. In this study, we explored LPA generation and its enzymatic pathway in a rat kidney-derived cell, NRK52E cells. Culturing of NRK52E cells with acyl lysophosphatidylcholine (acyl LPC), or lyso-platelet activating factor (lysoPAF, alkyl LPC) was resulted in increased extracellular level of choline, co-product with LPA by lysophospholipase D (lysoPLD). Their activities were enhanced by addition of calcium ions to the cell culture medium, but failed to be inhibited by S32826, an autotaxin (ATX)-specific inhibitor. Liquid chromatography-tandem mass spectrometric analysis revealed the small, but significant extracellular production of acyl LPA/cyclic phosphatidic acid (cPA) and alkyl LPA/cPA. The mRNA expression of glycerophosphodiesterase (GDE) 7 with lysoPLD activity was elevated in confluent NRK52E cells cultured over 3 days. GDE7 plasmid-transfection of NRK52E cells augmented both extracellular and intracellular productions of LPAs (acyl and alkyl) as well as extracellular productions of cPAs (acyl and alkyl) from exogenous LPCs (acyl and alkyl). These results suggest that intact NRK52E cells are able to produce choline and LPA/cPA from exogenous LPCs through the enzymatic action of GDE7 that is located on the plasma membranes and intracellular membranes.  相似文献   

11.
It has been proposed that various urinary proteins interact specifically with different calcium oxalate hydromorphs and these interactions have important implications regarding the understanding of the onset and progress of kidney stone disease. Calcium oxalate monohydrate and dihydrate crystals were grown and characterised thoroughly to establish sample purity. These crystals were then incubated in artificial urine samples containing isolated urinary macromolecules. Crystal growth was prevented by saturating the incubation mix with calcium oxalate, and this was confirmed through electron microscopy and calcium measurements of the incubation mix. The surface interactions between the different calcium oxalate hydrates and urinary proteins were investigated by the use of Western blots and immunoassays. The same proteins, notably albumin, Tamm-Horsfall protein, osteopontin and prothrombin fragment 1, associated with both hydrates. There was a trend for more protein to associate with calcium oxalate dihydrate, and greater quantities of different proteins associated with both hydrates when Tamm-Horsfall protein was removed from the incubation mix. There is no evidence from this study to indicate that particular proteins interact with specific calcium oxalate hydrates, which in turn suggests that these protein-mineral interactions are likely to be mediated through non-specific charge interactions.  相似文献   

12.
1. A group of five transformation-responsive secreted proteins, ranging in molecular mass from 31 to 70 kDa, were identified in cultured normal rat kidney (NRK) fibroblasts. 2. One such protein (p52) was found to be a major secreted and substrate-attached component of NRK cells. 3. Kirsten sarcoma virus-transformed NRK cells failed to accumulate p52 in either the secreted or substrate-associated protein compartments; this protein was inducible, however, in transformed cells by culture in 2 mM sodium-n-butyrate. 4. Kinetics of p52 induction in transformed NRK cells, relative to the time course of increased cell spreading, and its enrichment in the substrate-associated protein fraction suggest that p52 might function in cell-substrate attachment.  相似文献   

13.
Calcium oxalate kidney stones contain low amounts of proteins, some of which have been implicated in progression or prevention of kidney stone formation. To gain insights into the pathophysiology of urolithiasis, we have characterized protein components of calcium oxalate kidney stones by proteomic approaches. Proteins extracted from kidney stones showed highly heterogeneous migration patterns in gel electrophoresis as reported. This was likely to be mainly due to proteolytic degradation and protein-protein crosslinking of Tamm-Horsfall protein and prothrombin. Protein profiles of calcium oxalate kidney stones were obtained by in-solution protease digestion followed by nanoLC-MALDI-tandem mass spectrometry, which resulted in identification of a total of 92 proteins in stones from 9 urolithiasis patients. Further analysis showed that protein species and their relative amounts were highly variable among individual stones. Although proteins such as prothrombin, osteopontin, calgranulin A and calgranulin B were found in most stones tested, some samples had high contents of prothrombin and osteopontin, while others had high contents of calgranulins. In addition, calgranulin-rich stones had various neutrophil-enriched proteins such as myeloperoxidase and lactotransferrin. These proteomic profiles of individual kidney stones suggest that multiple systems composed of different groups of proteins including leucocyte-derived ones are differently involved in pathogenesis of individual kidney stones depending on situations.  相似文献   

14.
Females have less incidence/prevalence of kidney stone disease than males. Estrogen thus may serve as the protective factor but with unclear mechanism. This study explores cellular mechanism underlying such stone preventive mechanism of estrogen. Madin darby canine kidney (MDCK) renal tubular cells are incubated with or without 20 nm 17β‐estradiol for 7 days. Comparative proteomics reveals 58 differentially expressed proteins in estrogen‐treated versus control cells that are successfully identified by nanoLC–ESI–Q‐TOF‐MS/MS. Interestingly, these altered proteins are involved mainly in “binding and receptor,” “metabolic process,” and “migration and healing” networks. Functional investigations demonstrate reduction of calcium oxalate (CaOx) crystal‐binding capability of the estrogen‐treated cells consistent with the decreased levels of annexin A1 and α‐enolase (the known CaOx crystal‐binding receptors) on the cell surface. High‐calcium and high‐oxalate challenge initially enhances surface expression of annexin A1 and α‐enolase, respectively, both of which return to their basal levels by estrogen. Additionally, estrogen reduces intracellular ATP level and promotes cell migration and tissue healing. Taken together, estrogen causes changes in cellular proteome of renal tubular cells that lead to decreased surface expression of CaOx crystal receptors, reduced intracellular metabolism, and enhanced cell proliferation and tissue healing, all of which may contribute, at least in part, to stone prevention.  相似文献   

15.
The structure of bovine intestinal calcium-binding protein (ICaBP) has been determined crystallographically at a resolution of 2.3 A and refined by a least squares technique to an R factor of 17.8%. The refined structure includes all 600 non-hydrogen protein atoms, two bound calcium ions, and solvent consisting of one sulfate ion and 36 water molecules. The molecule consists of two helix-loop-helix calcium-binding domains known as EF hands, connected by a linker containing a single turn of helix. Helix-helix interactions are primarily hydrophobic, but also include a few strategic hydrogen bonds. Most of the hydrogen bonds, however, are found in the calcium-binding loops, where they occur both within a single loop and between the two. Examination of the hydrogen bonding patterns in the calcium-binding loops of ICaBP and the related protein, parvalbumin, reveals several conserved hydrogen bonds which are evidently important for loop stabilization. The primary and tertiary structural features which promote the formation of an EF hand were originally identified from the structure of parvalbumin. They are modified in light of the ICaBP structure and considered as they apply to other calcium-binding proteins. The C-terminal domain of ICaBP is a normal EF hand, with ion binding properties similar to those of the calmodulin hands, but the N-terminal domain is a variant hand whose calcium ligands are mostly peptide carbonyls. Relative to a normal EF hand, this domain exhibits a similar KD for calcium binding but a greatly reduced affinity for calcium analogs such as cadmium and the lanthanide series. Lanthanides in particular may be inappropriate models for calcium in this system.  相似文献   

16.
17.
We examined the structure and the distribution of binding activities within bacterially produced fragments of Drosophila alpha spectrin. By electron microscopy, purified spectrin fragments resembled the corresponding regions of native spectrin. The contour lengths of recombinant spectrin molecules were proportional to the length of their coding sequences, which is consistent with current models of spectrin structure in which individual segments of the polypeptide contribute independently to the structure of the native molecule. We localized two sites at which calcium may regulate spectrin function. First, a site responsible for calmodulin binding to Drosophila alpha spectrin was identified near the junction of repetitive segments 14 and 15. Second, a domain of Drosophila alpha spectrin that includes two EF hand calcium-binding sequences bound 45Ca in blot overlay assays. EF hand sequences from a homologous domain of Drosophila alpha actinin did not bind calcium under the same conditions.  相似文献   

18.
The rat kidney H1 oxalate binding protein was isolated and purified. Oxalate binds exclusively with H1B fraction of H1 histone. Oxalate binding activity is inhibited by lysine group modifiers such as 4',4'-diisothiostilbene-2,2-disulfonic acid (DIDS) and pyridoxal phosphate and reduced in presence of ATP and ADP. RNA has no effect on oxalate binding activity of H1B whereas DNA inhibits oxalate binding activity. Equilibrium dialysis method showed that H1B oxalate binding protein has two binding sites for oxalate, one with high affinity, other with low affinity. Histone H1B was modeled in silico using Modeller8v1 software tool since experimental structure is not available. In silico interaction studies predict that histone H1B-oxalate interaction take place through lysine121, lysine139, and leucine68. H1B oxalate binding protein is found to be a promoter of calcium oxalate crystal (CaOx) growth. A 10% increase in the promoting activity is observed in hyperoxaluric rat kidney H1B. Interaction of H1B oxalate binding protein with CaOx crystals favors the formation of intertwined calcium oxalate dehydrate (COD) crystals as studied by light microscopy. Intertwined COD crystals and aggregates of COD crystals were more pronounced in the presence of hyperoxalauric H1B.  相似文献   

19.
20.
Normal rat kidney (NRK) fibroblasts respond to the cell shape-modulating chemical agent cytochalasin D (CD) with augmented synthesis of the 52-kDa substrate-associated protein p52. p52 is a complex glycoprotein, existing as 12 different isoforms, which include a 43-kDa "core" protein (p43), four 50-kDa species (p50-0,1,2,3), and at least seven distinct pI variants of the mature 52-kDa protein. A threshold of 2-4 microM CD was found to be necessary to augment p52 deposition into both the secreted protein- and saponin-resistant cytomatrix (SAP) fractions of NRK cells. This concentration of CD was also necessary to initiate significant cell rounding. Augmented p52 production in CD-treated NRK (NRK/CD) cells provided a means to assess the identity of this protein. p52 was found to be identical to rat plasminogen activator inhibitor type-1 (rPAI-1) and to PAI-1-like proteins of other species by comparative immunoprecipitation, 2-D electrophoretic profile, V8 protease digest mapping, and subcellular fractionation criteria. Quantitation of rPAI-1 cytoplasmic mRNA abundance, using the rPAI-1 cDNA probe pSS1-3, revealed an induction of rPAI-1 mRNA in NRK/CD cells which paralleled the increased protein production. CD-augmented p52(rPAI-1) synthesis and SAP deposition was blocked by actinomycin D, implicating a need for RNA synthesis during the period of CD exposure to effect induction. Augmentation of p52 expression in NRK/CD fibroblasts, thus, appears to involve both cell shape-associated metabolic processes and concomitant RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号